• Title/Summary/Keyword: mineral ions

Search Result 270, Processing Time 0.03 seconds

Effect of Mercuric Chloride on the Contents of Mineral Nutrients in the Liver and Kidney of Rats (흰쥐의 간장(肝臟) 및 신장(腎臟) 무기질(無機質)에 미치는 수은(水銀)의 영향(影響))

  • Cho, Soo-Yeul;Park, Sun-Woo;Lee, Sang-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.1
    • /
    • pp.22-26
    • /
    • 1984
  • The effect of changes in body weight, some blood components and some inorganic ions in liver and kidney, were studied on male rats receiving ad libitum on 5, 40, and 200 ppm of mercuric chloride solution during so days. The results obtained were summarized as follows ; 1. The total body weights were decreased in proportion to increment of mercury concentration. The internal organs weights i. e. , liver, kidney, spleen, and heart, were generally increased. Especially, the weight increment of kidney was the highest by intaking of mercuric chloride solution. 2. There were no significant changes in hematocrit values, activities of GOT and GPT in blood of rats receiving mercuric chloride. On the other hand, the plasma levels of cholesterol were significantly increased. The receiving of 200 ppm mercuric chloride solution to rats was resulted in the remarkable reduction of total protein levels and A/G ratio in plasma. 3. The markable rise occured in the accumulation of Hg, in both liver and kidney in proportion to supplying in rats while there was a tendency decreasing of Cu, Zn contents in liver, whereas there was a tendency increasing of Cu, Zn in kidney of rats.

  • PDF

Alum and Hydroxide Routes to ${\alpha}-Al_2O_3$ (I) Calculation of Solubility Diagram for Extracting the Pure Alumina from Alumino-Silicate and its Experimetal Confirmation (명반 및 수산화 알루미늄을 이용한 ${\alpha}$-Al$_2$O$_3$의 합성 (I) 규산 알루미늄광으로부터 순수한 ${\alpha}$-Al$_2$O$_3$ 추출을 위한 용해도 모델 계산 및 실험적 검증)

  • Yoo Jong-Seok;Choy Jin-Ho;Han Kyoo-Seung;Han Yang-Su;Lee Chang-Kyo;Lee Nang-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.414-421
    • /
    • 1991
  • High-purity alumina powder was prepared by extracting the natural alumino-silicate mineral (halloysite) in H$_2$SO$_4$ solution. For the selective precipitation of alum and aluminum hydroxide, the solubility diagram was prior calculated by also considering the formation of hydroxides and carbonates for all the metal ions in an aqueous solution, which allow us to control the contamination of impurities envolved in the natural minerals. Ammonium aluminum sulfate (alum) and alumium hydroxide could be successfully prepared at pH = 1.5∼2.5 and pH = 6∼8, respectively according to our solubility diagrams. The purity of alum-and hydroxide-derived ${\alpha}-Al_2O_3$ was determined to be 99.7${\%}$ and 99.0${\%}$, respectively, which indicates the former route would be more desirable for the large scale application. It is also worthy to note that the impurities like Na and Si were strongly reduced in the former (Na = 0.05${\%}$, Si = 0.09${\%}$) compared to the latter (Na = 0.29${\%}$, Si = 0.12${\%}$).

  • PDF

Effects of High Temperature Heating on the Some Physicochemical Properties of Korean Red Ginseng (Panax ginseng C.A. Meyer) Water Extract (고온 열처리가 홍삼물추출물의 이화학적 특성에 미치는 영향)

  • Kwak, Yi-Seong;Choi, Keum-Hee;Kyung, Jong-Soo;Won, Jun-Yeon;Rhee, Man-Hee;Lee, Jae-Gon;Hwang, Mi-Sun;Kim, Seok-Chang;Park, Chae-Kyu;Song, Kyung-Bin;Han, Gyeong-Ho
    • Journal of Ginseng Research
    • /
    • v.32 no.2
    • /
    • pp.120-126
    • /
    • 2008
  • This study was carried out to investigate the some physicochemical properties of Korean red ginseng (Panax ginseng C.A. Meyer) water extract (RGWE) after heated with high temperatures above $100^{\circ}C$ for 2 hours. RGWEs were heated at 100, 110 and $120^{\circ}C$ for 2 hours by using autoclave. After RGWEs were heated at high temperature for 2 hours without not adjustment of pH, the changes of saponin, free sugars, mineral and color in the RGWEs were investigated. Total ginsenoside content in control was 1.99%, while those of RGWE were 1.65, 1.49 and 1.29% when treated at 100, 110 and $120^{\circ}C$, respectively. The contents of total ginsenoside showed decreased tendency as heating temperatures were increased. The ginsenoside-$Rh_{2}$ and $-Rg_{3}$, which have been reported as very stable red ginseng ginsenosides, showed relatively strong spots on TLC when RGWEs were heated at 110 and $120^{\circ}C$. In case of free sugars in RGWEs, fructose, glucose and maltose showed high contents when compared with control, while Fe, Ca and Mg ions showed very low contents. Value of L in RGWE treated with high temperature was almost the same with control, while values of a and b were increased. Values of a were increased from -0.86 of control to +0.04, +0.05 and +1.14 when treated with 100, 110 and $120^{\circ}C$, respectively. Values of b also were increased from 27.68 of control to 33.61, 33.61 and 37.42 when treated with 100, 110 and $120^{\circ}C$, respectively. Values of total color in RGWEs treated with high temperatures, E, were finally increased by values of a and b.

Studies on the Production of $\beta$-Galactosidase by Lactobacillus sporogenes - Properties and Application of $\beta$-Glactosidase- (Lactobacillus sporogenes에 의한 $\beta$-Galactosidase 생산에 관한 연구 -$\beta$-Galactosidase의 효소학적 성질 및 응용-)

  • 김영만;이정치;최용진;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.4
    • /
    • pp.355-359
    • /
    • 1985
  • The purified $\beta$-galactosidase from L. sporogenes was most active at pH 7.0 and 6$0^{\circ}C$ with O-nitrophenyl-$\beta$-D-galactopyranoside (ONPG) in 0.05 M phosphate buffer. It was stable over a pH range from 5.0 to 9.0 and lost less than 10% of its activity after heating for 30 minutes at 6$0^{\circ}C$ and pH 7.0. All the mineral ions examined in this work showed no significant activating effect, whereas L-cysteine exerted a great stimnlatory effect on the enzyme activity at the concentration of 10 mM. The Km values were 1.2 mM for ONPG and 33.3 mM for lactose. Approximately 85% of lactose in cow's milk, in 10% skim milk and in 5% lactose solution was hydrolyzed after 4 hours incubation at 6$0^{\circ}C$ with 2 units of the purified $\beta$-galactosidase per $m\ell$ of the substrate solutions. The $\beta$-galactosidase from L. sporogenes, therefore, is considered to be suitable for hydrolysis of lactose in milk and other dairy products.

  • PDF

A Study on Leaching and Solvent Extraction for the Recovery of Copper Ore for Small-Scale Mining in Tanzania (탄자니아의 소규모 광산에서 구리광석 정제를 위한 침출 및 용매 추출에 관한 연구)

  • Soh, Soon-Young;Chun, Yong-Jin;Itika, Ambrose J.M.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.438-445
    • /
    • 2017
  • Tanzania has abundant copper deposits, but copper-metal extraction remains low there, owing to the lack of suitable copper recovery processes and insufficient funds for developing mining technologies. Accordingly, leaching and solvent extraction methods for the extraction of copper from copper ore were studied with a particular emphasis on developing a simple processing method for small-scale copper mining. Chrysocolla ore was used as the copper-bearing mineral and sulfuric acid was used as the leaching reagent. A maximum copper recovery of 95.1% was obtained when the particles in the sample were smaller than $53{\mu}m$, the concentration of 98%(w/w) sulfuric acid in the leaching solution was 5.0 g/L and the stirring rate was between 60 and 80 rpm. The highest selectivity of $Cu^2+$ in the solvent extraction was obtained using 15% LIX-70 in kerosene. In the pH range from 0.5 to 3.0, the efficiency of $Cu^2+$ extraction increased with increasing pH. However, at pH values higher than 3.0, other metal ions were extracted into the organic phase more readily than $Cu^2+$. The highest solvent extraction rate obtained was 96.5% at pH values of 2.0 and 3.0 using 15% LIX-70.

Influence of Na/Al Ratio and Curing Temperature of Geopolymers on Efflorescence Reduction (Na/Al 비와 양생온도가 지오폴리머의 백화억제에 미치는 영향)

  • Kim, Byoungkwan;Heo, Ye-Eun;Chon, Chul-Min;Lee, Sujeong
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.59-67
    • /
    • 2018
  • Efflorescence is a white deposit of powders in the surface of cement concrete which can also occur in geopolymers. Efflorescence occurs when sodium ions in alkali activator react with atmospheric carbon dioxide to form sodium carbonate components. In this study, we investigated whether the secondary efflorescence can be reduced by controlling the Na/Al mole ratio or by changing the curing temperature and heat curing time in fly ash-based geopolymers. The 28 days compressive strength in geopolymers having Na/Al ratio of 1.0 was higher than geopolymers having Na/Al ratio of 0.8. The strength increased with the increasing curing temperature and longer heat curing time. On the other hand, efflorescence was lower when the curing temperature was high and the heat curing time was longer in the geopolymers having Na/Al ratio of 1.0. The geopolymers having Na/Al ratio of 0.8 showed accelerated efflorescence occurrence than the geopolymers having Na/Al ratio of 1.0. In order to reduce the occurrence of the secondary efflorescence of fly ash-based geopolymers, it will be advantageous to maintain the Na/Al ratio at 1.0, increase the curing temperature, and lengthen the heating curing time.

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

A Study for Crystal Growth Inhibition of Ettringite by Solution Synthesis Experiment (용액합성실험에 의한 에트린자이트 결정성장억제 연구)

  • Lee, Hyo-Min;Hwang, Jin-Yeon;Oh, Ji-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.51-61
    • /
    • 2010
  • Ettringite $(Ca_6[Al(OH)_6]_2(SO_4)_3{\cdot}26H_2O)$ is a sulfate mineral that shows a complicate property in concrete. It is often called as "a cancer of concrete" because secondary ettringite formation in hardened concrete often cause expansion and cracking of concrete due to its expansive crystal structure. In the present study, we tested the possibility for crystal growth inhibition of secondary ettringite by crystallization inhibitors that are commercially used for scaling inhibitors in Korea. For the test, we developed a method of ettringite solution synthesis. Three types of crystallization inhibitors were selected and examined the effects On ettringite growth inhibition. The experimental results of ettringite solution synthesis indicated that ettringite was successfully synthesized under condition that the mass balance between calcium hydroxide saturated solution and aluminum sulfate solution was attained. Monosulfate and semisulfate were synthesized when the ratio of $Ca^{2+}$ ions to ${SO_4}^{2+}$ ions was increased. The induction time of ettringite crystallization was less than 2 min. and crystallization was almost completed within an hour. The experimental results of ettringite crystallization inhibition showed that organic PBCT (2-Phosphonobutane-1,2,4-Tricarboxylic Acid) and inorganic SHMP (Sodium Hexametaphosphate) were relatively less effective on ettringite crystallization inhibition under experimental conditions. However, organic HEDP (1-Hydoxyethylidene-1,1-Diphosphonic Acid) effectively prevented ettringite growth with producing amorphous gel phase materials up to inhibitor concentration 0.1 vol.% of aluminum sulfate solution.

The Alterations of Geochemical Behavior of Arsenic in Stabilized Soil by the Addition of Phosphate Fertilizer (인산질 비료에 의한 안정화 적용 토양 내 비소의 지구화학적 거동 변화)

  • Jeon, Yong-Jung;Kim, Bun-Jun;Ko, Ju-In;Ko, Myoung-Soo
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.209-217
    • /
    • 2022
  • The purpose of this study was to confirm the dissolution of arsenic from the stabilized soil around abandoned coal mines by cultivation activities. Experimental soils were collected from the agricultural field around Okdong and Buguk coal mines, and the concentration of arsenic in the soil and the geochemical mobility were confirmed. The average arsenic concentration was 20 mg/kg. The soil with relatively high geochemical mobility of arsenic in the soil was used in the batch and column experiment. The limestone was mixed with soil for soil stabilization, and the mixing ratio was 3% of limestone, based on the soil weight. The phosphoric acid fertilizer (NH4H2PO4) was added to the soil to simulate a cultivation condition according to the Rural Development Administration's rules. Comparative soil without mixing limestone was prepared and used as a control group. The arsenic extraction from soil was increased following the fertilizer mixing amount and it shows a positive relationship. The concentration of phosphate in the supernatant was relatively low under the condition of mixing limestone, which is determined to be result of binding precipitation of phosphate ions and calcium ions dissolved in limestone. Columns were set to mix phosphoric acid fertilizers and limestone corresponding to cultivation and stabilization conditions, and then the column test was conducted. The variations of arsenic extraction from the soil indicated that the stabilization was effectible until 10 P.V.; however, the stabilization effect of limestone decreased with time. Moreover, the geochemical mobility of arsenic has transformed by increasing the mobile fractions in soil compared to initial soil. Therefore, based on the arsenic extraction results, the cultivation activities using phosphoric fertilizer could induce a decrease in the stabilization effect.

Environmental Geochemistry and Contamination Assessment of the Tohyun Mine Creek, Korea (토현광산 수계의 환경지구화학적 특성과 오염도 평가)

  • 이찬희;이현구;이종창;전서령
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.471-483
    • /
    • 2001
  • The pH values of the mine and surface water from the Tohyun mine creek were higher compared with those of groundwater, and 2nd round samples in same sites were even alkaline. The stream and mine waters belong to the characteristics of (Ca+Mg)-(SO$_4$) and (Ca+Mg)-(HCO$_3$) types, and groundwaters have to the (Ca+Mg+Na+K)-(HCO$_3$+SO$_4$) type. As the 2nd samples. concentrations of mostly anions are increasing compared with the forder samples. However, the mostly cation concentrations are decreasing. The hydrogeochemistry indicate that water quality is different chemical characteristics and evolution trends. The range of $\delta$D and $\delta$$^{18}$ valutes (relative to SMOW) in the waters are shown in -62.2 to -70.1$\textperthousand$, and -8.1 to -9.4$\textperthousand$. The values are plowed parallel to $\delta$D=8$\delta$$^{18}$ O+ (6$\pm$4). The d values of groundwater show 2.4, which is lower than the surface (5.2) and mine (7.6) waters. Strontium concentra titans range from 0.025 to 11.844 mg/$\ell$ in all kinds of water samples, but the groundwater has the highest contents The $^{87}$ Sr/$^{86}$ Sr ratios (0.7115 to 0.7129) show more lightened to the groundwater. The $\delta$$^{18}$ O value, Ca and Sr contents are decreased with $^{87}$ Sr/$^{86}$ Sr increasing, because it is support to the altitude effects of the sampling sites rather than a water-rock interaction of environmental isotope. Using computer code of WATEQ4F, saturation indices of albite, Quartz, gibssite and gypsum are calculated to be soluble. The calcite and dolomite show super saturation state, however, clay mineral species are plotted boundary between undersaturation and supersaturation. In the Tohyun mine creek, reaction materials with ore wastes arid precipitation have influence upon increasing EC and TDS of the waters independent of pH. The SO$_4$ concentrations in the mine water is 181.845 mg/$\ell$. This is abruptly increase in surface water and then detected 249.727 mg/$\ell$ in the groundwater. As a results of the calculated sulfate mineral solubilities, the sulfate ions became saturation states an above 150 mg/$\ell$ concentrations.

  • PDF