• Title/Summary/Keyword: mineral element

Search Result 349, Processing Time 0.038 seconds

Temperature change around a LNG storage predicted by a three-dimensional indirect BEM with a hybrid integration scheme

  • Shi, Jingyu;Shen, Baotang
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.309-317
    • /
    • 2018
  • We employ a three-dimensional indirect boundary element method (BEM) to simulate temperature change around an underground liquefied natural gas storage cavern. The indirect BEM (IBEM) uses fictitious heat source strength on boundary elements as basic variables which are solved from equations of boundary conditions and then used to compute the temperature change at other points in the considered problem domain. The IBEM requires evaluation of singular integration for temperature change due to heat conduction from a constant heat source on a planar (triangular) region. The singularity can be eliminated by a semi-analytical integration scheme. However, it is found that the semi-analytical integration scheme yields sharp temperature gradient for points close to vertices of triangle. This affects the accuracy of heat flux, if they are evaluated by finite difference method at these points. This difficulty can be overcome by a combination of using a direct numerical integration for these points and the semi-analytical scheme for other points distance away from the vertices. The IBEM and the hybrid integration scheme have been verified with an analytic solution and then used to the application of the underground storage.

Finite element modeling of reinforced and prestressed concrete panels under far-field blast loads using a smeared crack approach

  • Andac Lulec;Vahid Sadeghian;Frank J. Vecchio
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.725-738
    • /
    • 2024
  • This study presents a macro-modeling procedure for nonlinear finite element analysis of reinforced and prestressed concrete panels under blast loading. The analysis procedure treats cracked concrete as an orthotropic material based on a smeared rotating crack model within the context of total-load secant stiffness-based formulation. A direct time integration method compatible with the analysis formulation is adapted to solve the dynamic equation of motion. Considerations are made to account for strain rate effects. The analysis procedure is verified by modeling 14 blast tests from various sources reported in the literature including a blast simulation contest. The analysis results are compared against those obtained from experiments, simplified single-degree-of-freedom (SDOF) methods, and sophisticated hydrocodes. It is demonstrated that the smeared crack macro-modeling approach is a viable alternative analysis procedure that gives more information about the structural behavior than SDOF methods, but does not require detailed micro-modeling and extensive material characterization typically needed with hydrocodes.

A Study on Interaction of Estuarial Water and Sediment Transport (하구수와 표사의 상호작용에 관한 연구)

  • Lee, H.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.451-461
    • /
    • 2000
  • The design and maintenance of navigation channel and water facilities of an harbor which is located at the mouth of river or at the estuary area are difficult due to the complexity of estuarial water and sediment circulation. Effects of deepening navigable waterways, of changing coastline configurations, or of discharging dredged material to the open sea are necessary to be investigated and predicted in terms of water quality and possible physical changes to the coastal environment. A borad analysis of the transport mechanism in the estuary area was made in terms of sediment property, falling velocity, concentration and flow characteristics. In order to simulate the transport processes, a two-dimensional finite element model is developed, which includes erosion, transport and deposition mechanism of suspended sediments. Galerkin’s weighted residual method is used to solve the transient convection-diffusion equation. The fluid domain is subdivided into a series of triangular elements in which a quadratic approximation is made for suspended sediment concentration. Model could deal with a continuous aggregation by stipulating the settling velocity of the flocs in each element. The model provides suspended sediment concentration, bed shear stress, erosion versus deposition rate and bed profile at the given time step.

  • PDF

Trace element concentrations profiles in the hair of normal children living in the northern area of Seoul (서울 북부지역에 거주하는 정상 아동의 모발 미네랄 함량)

  • Kwon, Ji Won;Kim, Byung Eui;Park, Mi Jung;Kim, Sang Woo
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.1
    • /
    • pp.18-23
    • /
    • 2006
  • Purpose : The reliability of hair mineral analyses regarding nutritional status, environmental exposure or diseases is controversial. The aim of this study was to determine the normal reference range of hair mineral concentration of Korean children. Methods : We examined hair mineral concentrations of 223 children(3-12 yrs old, 110 boys, 113 girls, mean age $8.8{\pm}2.2$ yrs old) living in the northern area of Seoul. The trace elements including six toxic elements(Al, As, Cd, Ba, Hg, Pb) and 11 nutritional elements(Na, Mg, P, K, Ca, Cr, Mn, Fe, Cu, Zn, Se) were analyzed by inductive coupled plasma mass spectrometry(ICP-MS). Results : The mean concentrations of Ca and Mg were higher in girls than in boys. The mean concentrations of Cd, Pb and Cr were higher in boys than girls. The Zn, Ca, Mg, Cu and Hg levels in hair samples were positively correlated with increasing age. The Zn levels of the Korean children's hair samples appear to be lower than that of other countries' reference values. Conclusion : There are considerable differences in hair mineral concentrations by age, sex and race. Additional research is needed to establish Korean reference values, and to evaluate the usefulness of hair mineral analyses as a screening tool for nutrition- and environment-related childhood diseases.

Effect on Milking Performance of Vitamin-Trace Element Supplements to Early Lactation Italian Brown Cows Grazing Ryegrass (Lolium multiflorum) Pasture

  • Tufarelli, Vincenzo;Khan, R.U.;Laudadio, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.9
    • /
    • pp.1227-1232
    • /
    • 2011
  • The objective of this study was to examine the effects of concentrates containing different levels of a vitamin-trace elements premix on milk yield and composition of dairy cows. The trial, which lasted 14 weeks, was conducted from January to March and used 45 multiparous Brown cows in the early phase of lactation. Cows (n = 15 per treatment) were randomly allocated to three dietary treatments: the first group (control, C-0) was fed pelleted concentrate containing background vitamins and trace elements that supplied 1.0 times cows' daily requirements; the second group were fed the same concentrate, but containing 2.5 g/kg of vitamin and trace mineral premix per kg of concentrate (C-2.5); the third group were fed the same concentrate, but containing 5 g/kg of vitamin and trace mineral premix per kg of concentrate (C-5). The daily ration included ad libitum chopped oat hay, and the cows also had 8 h/d grazing on a ryegrass (Lolium multiflorum) pasture. During the performance trial, cow milk yield was daily recorded and individual milk samples were analysed for milk composition and to determine milk renneting properties. Cows fed the intermediate premix level (C-2.5) in diet showed the highest fat-corrected milk production (p<0.05) compared to other groups. None of the milk quality parameters studied were influenced by dietary treatment, except for milk rheological parameters (rennet clotting time and curd firmness) that were positively improved in cows fed the C-2.5 diet (p<0.05). The findings from this study show that intermediate level of vitamin-trace elements premix in concentrate can be advantageously used in grazing dairy cows without negative effects on yield and quality of milk produced.

Systematic Investigation of the Effects of Macro-elements and Iron on Soybean Plant Response to Fusarium oxysporum Infection

  • Cai, Hongsheng;Tao, Nan;Guo, Changhong
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.398-405
    • /
    • 2020
  • Nutrient manipulation is a promising strategy for controlling plant diseases in sustainable agriculture. Although many studies have investigated the relationships between certain elements and plant diseases, few have comprehensively explored how differing mineral nutrition levels might affect plant-fungal pathogen interactions, namely plant susceptibility and resistance. Here, we systematically explored the effects of the seven mineral elements that plants require in the greatest amounts for normal development on the susceptibility of soybean plants (Glycine max) to Fusarium oxysporum infection in controlled greenhouse conditions. Nitrogen (N) negligibly affected plant susceptibility to infection in the range 4 to 24 mM for both tested soybean cultivars. At relatively high concentrations, phosphorus (P) increased plant susceptibility to infection, which led to severely reduced shoot and root dry weights. Potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), and iron (Fe) induced plant resistance to infection as their concentrations were increased. For K and Ca, moderate concentrations had a positive effect on plant resistance to the pathogen, whereas relatively high doses of either element adversely affected plant growth and promoted disease symptoms. Further experiments were conducted, assessing disease suppression by selected combinations of macro-elements and Fe at screened concentrations, i.e., K (9 mM) plus Fe (0.2 mM), and S (4 mM) plus Fe (0.2 mM). The disease index was significantly reduced by the combination of K plus Fe. In conclusion, this systematic investigation of soybean plant responses to F. oxysporum infection provides a solid basis for future environmentally-friendly choices for application in soybean disease control programs.

Geochemical Study on Pegmatites in Central Region of Taebaek Mineralized Area (태백산(太白山) 광화대(鑛化帶) 중부지역(中部地域) 페그마타이트에 대한 지화학적(地化學的) 연구(硏究))

  • Choi, Sung-Hoon;Chi, Jeong-Mahn
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.35-57
    • /
    • 1990
  • This study has been carried out on the Pegmatites, Naedeogri Granites, Nonggeori Granites and Metasedimentary rocks in the middle area of Taebaeksan region to investigate the geochemical properties and possibility of productivity. Pegmatites are characterized by metamorphosed anatectic pegmatite and differentiated magmatic pegmatite, and are mixed type of rare-element pegmatite and mica-bearing pegmatite by the classification of Ginsburg(1979). The petrological type of the igneous rocks is thought to be calcalkali, subalkaline and peralumious. According to chemical variations against D. I., differentiation trends from Naedeogri and Nonggeori Granites through non-mineralized pegmatites to mineralized pegmatites are supposed. From the relationship between oxided and $SiO_2$, pegmatites and Nonggeori Granite have shown similar tendencies and bulk composition of pegmatites and similar to metasedimentary rocks near the intrusives. By judging the correlations of trace elements, it is elucidated that pegmatites adjacent to Naedeogri and Nonggeori Granites have been originated in magma differentiation from these granites and the others have been differentiated by remelting or partial melting from metasedimentary rocks. $Sp_5$, $Sp_8$, and $Sp_9$ pegmatites are considered as productive rocks, and $Sp_4$, $Sp_6$, $Sp_7$, $Sp_{10}$, $Sp_{11}$, and $Sp_{12}$ pegmatites and granites are supposed to have a weak productivity, in terms of element ratios related with Sn mineralizations. Tourmalines in productive pegmatites are formed under the circumstance of Li-poor granitoids and associated with pegmatites, and the others are seemed to be originated in metapelites and metapsammites which are not coexisting with an Al-saturating phase. Three types of chemical zoning are noticed in tourmalines: (1) apparently homogeneous compositional patterns, (2) a continuous core-to-rim zoning and, (3) a discontinuous core-to-rim zoning. From results of EPMA of tourmalines, Al, Mg and Ca increase closer to rim, while Fe decreases.

  • PDF