• Title/Summary/Keyword: mineral admixtures

Search Result 218, Processing Time 0.025 seconds

A Strength on the Properties of Non-Cement Mortar containing Rice Husk Powder extracted from Digestion (증해 추출 왕겨 분말을 혼입한 무시멘트 모르타르의 강도 특성)

  • Cho, Sung-Eun;Cho, Sung-Won;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.225-226
    • /
    • 2021
  • Recently, environmental problems have emerged as a major issue all over the world due to an increase in carbon dioxide(CO2). The amount of CO2 generated during cement production accounts for 6% to 8% of domestic CO2 emissions and a solution to reduce CO2 emissions the construction industry is trying to use mineral admixtures to reduce cement. Since digestion has no firing process the advantage of it is that there is no air pollution to occur. In this study, we studied the compressive strength of binary non-cement mortar containing rice husk powder extracted from digestion by the ratio of 10%, 20%, 30%, 40%. As a result, the table flow was increased when the mixing rate of rice husk powder extracted from digestion was higher, and the highest compressive strength was shown when the rice husk powder extracted from digestion mixing rate was 10%.

  • PDF

Early Age Properties of HPC Columns under Construction-Site Conditions

  • Yun, Ying-Wei;Jang, Il-Young
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.63-68
    • /
    • 2008
  • High performance concrete (HPC) is widely used in civil engineering due to its high durability and low permeability etc. Compared with ordinary concrete, HPC may develop much higher AS (autogenous shrinkage) at early age due to the relative low water cement (w/c) ratio and adding of mineral admixtures, which is one of the main reasons for early age micro-cracking of HPC structures. This paper studies the early age property of HPC columns under similar construction-site surroundings by embedded strain transducers. Results show that for HPC structure, early-age autogenous shrinkage especially within the first day after concrete pouring is pretty large. AS within the first day are 60% larger than those for 14 days in this research for all specimens. Therefore it should be taken into account for structure durability. By comparison of PHPC (plain HPC column) and RHPC (reinforced HPC column) specimens, the effects of reinforced bars on AS and temperature distribution have been analyzed. Also the influence of w/c ratio on AS is demonstrated.

Drying Shrinkage of High-Strength Concrete (고강도 콘크리트의 건조수축)

  • 임준영;정승호;이회근;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.437-442
    • /
    • 2002
  • Drying shrinkage is the decrease in the volume of a concrete element when it loses moisture by evaporating. Because of low water/binder ratio(W/B) and the use of chemical and mineral admixtures for high-strength concrete, the evolutions of moisture and the rate of cement hydration in high- strength concrete are significantly different from those in normal strength concrete. In this study, the drying shrinkage of high-strength concrete with and without fly ash was measured up to the age of 200 days. From the experimental test results, it was observed that the drying shrinkage decreased as the W/B decreased. As the W/B is lowered from 0.50 to 0.27, the difference of drying shrinkage between the fly ash concrete and the ordinary concrete is gradually increased.

  • PDF

Seawater Attack Resistance of Mortars Containing Mineral Admixtures (광물질혼화재 혼합 모르타르의 해수침식 저항성)

  • 문한영;이승태;최강식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.527-530
    • /
    • 2002
  • In the present study, immersion test using artificial seawater was performed to evaluate the resistance of mortar specimens with or without ground granulated blast-furnace slag (SG) and fly ash (FA). Another variable was the fineness levels of SG (4,450, 6,000 and 8,000 ㎠/g). From the results of the immersion test for 270 days of exposure, the excellent resistance to seawater attack for SG mortar mixtures, especially in a high fineness levels, was confirmed. However, the reductions in compressive strength of FA mortar specimens was similar to those of OPC mortar specimens irrespective of replacement of FA.. In order to understand the deterioration mechanism due to seawater attack, X-ray diffraction (XRD) analysis were also carried out. Some reactants such as ettringite, gypsum, brucite and Friedel's salt were possibly detected through XRD technique.

  • PDF

A Experimental Study on the Elastic Modulus Property of High Strength Concrete Using the Various Meterials (사용 재료별 고강도콘크리트의 탄성계수 특성에 관한 실험적 연구)

  • Kim, Dong-Seuk;Ha, Jae-Dam;Kim, Ki-Soo;Choi, Long
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.245-250
    • /
    • 1998
  • The Elastic modulus depends on the elastic property of composition materials, the gravity of aggregate, the bond strength of binder, the usage and quantity of admixture, curing and measuring method, etc. Accordingly, the aim of this study, by manufacturing concrete of practical high strength range(600~ 1000kg/$\textrm{cm}^2$) with the specific cement and mineral admixtures, is to compare elastic modulus with the existing equations and also to estimate elastic property of use materials. As a result, it could be confirmed that the existing equations which were proposed by the ACI 363, CEB-FIP Code, and New-RC have a tendency to the overestimation in general. However, it could be confirmed that the KCI-96 and Norwegian NS 3473 equations are closed to measuring results, and that the elastic modulus property have a different tendency due to types of cements.

  • PDF

Sulfate Resistance of Cement Matrix Containing Limestone Powder

  • Moon Han-Young;Jung Ho-Seop;Lee Seung-Tae;Kim Jong-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.433-440
    • /
    • 2004
  • In order to improve the performance of concrete, generally, modern cements often incorporate several mineral admixtures. In this study, the experimental included the flow value, air content of mortar containing limestone powder and length change and compressive strength of mortar specimen immersed in sulfate solutions. From the experimental results, the limestone powder cement matrices improved the physical properties and sulfate resistance of cement matrices at $10\%$ replacement ratio of limestone powder. The $30\%$ replacement ratio of limestone powder was significantly deteriorated in sodium sulfate solution. Irrespective of fineness levels of limestone powder, length change and SDF of mortar specimens with only $10\%$ replacement was much superior to the other replacements.

Preliminary Study on the Relationship between Viscosity of Paste and Flowability of Mortar (페이스트 점도에 의한 모르타르 유동 특성에 관한 기초 연구)

  • Kim, Seung Hyun;Park, Chung-Hoon;Kim, Baek-Joong;Yi, Chong-Ku;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.269-270
    • /
    • 2012
  • In this study, for purpose of having a prediction on the flowability of mortar, we use the theory of excess paste, which gives a relationship between viscosity of paste versus water-binder ratio and mortar flow versus relative excess paste volume. Pastes and Mortars with four different mix proportions incorporating mineral admixtures were prepared. As a result of experiment, it seems that high flowability of mortar can be attributed to both lower viscosity of paste and increasing the volume of excess paste.

  • PDF

Properties of Low Heat Portland(Belite Rich) Cement Concrete (저열 포틀랜드(벨라이트)시멘트 콘크리트의 특성)

  • 하재담;김기수;김동석;구본창;조계홍;이동윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.66-71
    • /
    • 1998
  • Recently, it has been increased to construct massive concrete structures, like under-ground structure, offshore structure etc., ie. concrete construction have become larger and higher and are demanding lower heat concrete to prevent thermal cracking. It has been progressed to replace cements with fly-ash and slag to lower heat of hydration, but it is hard to control quality of the mineral admixtures in stage of adjusting of real construction. Application of low heat portland(Belite Rich) cement for the mass concrete is the best solution to satisfied those requirements. Here are explained the basic properties of fresh concrete as well as hardened concrete of using low heat portland cement(LHPC). Also, we compare the results of adiabatic temperature rise test using LHPC and OPC.

  • PDF

Experimental Study of Chloride Binding in Concrete with Mneral Amixtures (혼화재를 혼입한 콘크리트의 염화물 고정화에 관한 실험적 연구)

  • 박정준;고경택;김도겸;김성욱;하진규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.787-792
    • /
    • 2001
  • The chloride ion penetrating into concrete is classified as the fixed chloride ion being bound in reacting to cement hydrate and the free chloride ion having a direct effect on rebar corrosion because being in solution inside porosity of concrete. Therefore, in order to study the diffusion properties of chloride ion, it is needed to evaluate binding chloride ion in concrete. In this study, we tried to give a fundamental information on diffusion of chloride ion in concrete with mineral admixtures through analysis of micro-structure transformations in concrete and effects on binding of chloride ion in cement paste when mixed with fly-ash, blast furnace slag, silica fume etc. which are used to improve durability and permeability of concrete

  • PDF

Durability Evaluation of concrete using fly ash (플라이애시 혼입 콘크리트의 내구성 평가)

  • 조명석;송영철;류금성;고경택;김성욱;이장화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.755-760
    • /
    • 2002
  • The concrete structures in marine environment has been used type V cement(sulfate-resisting Portland cement), but according to the study results reported recently, the question has been raised for effect of the resistance to salt attack of the concrete using type V cement. It is increased the demands on the use of mineral admixtures such as fly ash, ground granulated blast-furnace slag instead of type V cement in order to improve the durability of concrete structures. Therefore, this study focused on the durability evaluation of concrete containing fly ash under marine environment, and the tests such as salt attack, carbonation, sulfate attack, and freezing-thawing were performed. Test results showed t]hat the resistance to salt attack, sulfate attack and freezing-thawing was improved, and the carbonation was in some disadvantage compared with normal concrete. Nevertheless, the durability of fly ash concrete would be maintained during the service life of structures.

  • PDF