• Title/Summary/Keyword: mine wastes

Search Result 59, Processing Time 0.033 seconds

Treatment of Abandoned Coal Mine Discharged Waters Using Lime Wastes

  • Park Joon-Hong;Kim Hee-Joung;Yang Jae-E.;Ok Yong-Sik;Lee Jai-Young;Jun Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.10a
    • /
    • pp.59-61
    • /
    • 2005
  • In Korea, hundreds of abandoned and closed coal and metallic mines are present in the steep mountain valleys due to the depression of the mining industry since the late 1980s. From these mines, enormous amounts of coal waste were dumped on the slopes, which causes sedimentation and acid mine drainage (AMD) to be discharged directly into streams causing detrimental effects on soil and water environments. A limestone slurry by-product (lime cake) is produced from the Solvay process in manufacturing soda ash. It has very fine particles, low hydraulic conductivities ($10^{-8}{\sim}10^{-9}cm/sec$), high pH, high EC due to the presence of CaO, MgO and $CaCl_2$ as major components, and traces of heavy metals. Due to these properties, it has potential to be used as a neutralizer for acid-producing materials. A field plot experiment was used to test the application of lime cake for reclaiming coal wastes. Each plot was 20 x 5 m (L x W) in size on a 56% slope. Treatments included a control (waste only), calcite ($CaCO_3$), and lime cake. The lime requirement (LR) for the coal waste to pH 7.0 was determined and treatments consisted of adding 100%, 50%, and 25% of the LR. The lime cake and calcite were also applied in either a layer between the coal waste and topsoil or mixed into the topsoil and coal waste. Each plot was hydroseeded with grasses and planted with trees. In each plot, surface runoff and subsurface water were collected. The lime cake treatments increased the pH of coal waste from 3.5 to 6, and neutralized the pH of the runoff and leachate of the coal waste from 4.3 to 6.7.

  • PDF

Fly Ash Application for Reduction of Acid Mine Drainage (AMD) as Runoff and Leachate Released from Mine Waste Disposal Sites

  • Oh, Se Jin;Moon, Sung Woo;Oh, Seung Min;Kim, Sung Chul;Ok, Yong Sik;Lee, Bup Yeol;Lee, Sang Hwan;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.533-539
    • /
    • 2014
  • Mine wastes such as acid mine drainage (AMD) can cause the detrimental effects on surrounding environment, thereby eventually threatening human health. Main objective of this study was to evaluate the neutralizing effect of fly ash (FA) as a stabilizing material AMD. Field plot was constructed in a coal waste depot which has caused aluminium-whitening adjacent to the stream. Different mixing ratios of FA were applied on a top of the soil, and then the physicochemical properties of runoff and soil were monitored. Constructed plots were as following: control (mine waste only (W)), mine waste + 20% ($w\;w^{-1}$)of FA (WC20M), mine waste + 40% ($w\;w^{-1}$)of FA (WC40M), and WC40M dressed with a fresh soil at the top (WC40MD). Result showed that initial pH of runoff in control was 5.09 while that in WC40M (7.81) was significantly increased. For a plot treated with WC40M, the concentration of Al in runoff was decreased to $0.22mg\;L^{-1}$ compared to the W as the control ($4.85mg\;L^{-1}$). Moreover, the concentration of Fe was also decreased to less than half at the WC40M compared to the control. Application of FA can be useful for neutralizing AMD and possibly minimizing adverse effect of AMD in mining area.

Environmental Assessment of Vitrified Mine Tailing Aggregate Using Various Leaching Methods (고농도 중금속 함유 광미를 이용한 유리화 처리 골재의 장기 용출특성에 따른 환경안전성 평가)

  • Lee, Sang-Woo;Chun, Sa-Ho;Lee, Ki-Kang;Lee, Sanghoon
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2007
  • Vitrified aggregates obtained by using mine tailings were evaluated using various leaching methods to assess their environmental safety. The leaching tests in this study include continuous batch leaching, Dutch availability leaching, pH-stat and tank diffusion test as well as TCLP (Toxicity Characteristic Leaching Procedure), which is commonly adopted. Vitrification technique has successfully been applied treating some solid wastes containing high level of heavy metals, such as EAF (Electric Arc Furnace) dust and mine tailings. The potentially most leachable element among trace metals was As and theoretically about 7% of total concentrations in the aggregate can be released under extreme condition. Zinc was leached about 4% and the other trace metals including Cd, Cr and Pb were hardly released from the vitrified mine tailing aggregate.

Antitank Mine Detection with Geophysical Prospecting (물리탐사를 이용한 대전차 지뢰 탐지)

  • Cho, Seong-Jun;Kim, Jung-ho;Son, Jeong-Sul;Bang, Eun-Seok;Kim, Jong-Wook
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.219-224
    • /
    • 2007
  • We conducted geophysical surveys to detect antitank mine at Namji-eup, Gyeongsangnam-do which had been installed during Korean war. The surveys consisted of 2 stages, at the first stage we divided the survey area into 7 block and carried out magnetic gradient survey and GEM-3 EM survey sequentially for each block. Hence we verified anomaly areas using an excavator and a metal detector. Most of anomalies were found to be garbages such as trash cans, metallic wastes, and so on. And also, the concrete pipe was found at depth of 1 m, which had not referred in any report of that area. At the second stage, after trenching the covered soil down to 75 cm the same surveys were conducted. We could not find the strong signal to be inferred from a antitank mine, but we pointed out some anomalies to need careful handling because demining is very dangerous work even though there is few possibility that is mine.

  • PDF

A Study on Development of a Liner Manufactured by Mine Wastes and Polymer (광산폐기물과 폴리머를 이용한 Liner 개발에 관한 연구)

  • 진호일
    • Economic and Environmental Geology
    • /
    • v.33 no.2
    • /
    • pp.139-146
    • /
    • 2000
  • Development of an effective liner by utilization of the tailings frm the Imcheon mine and polymer has been tried. The tailings piled in the Imcheon mine, whose true specific gravity is about 2.86, are composed mainly of quartz, alkali-feldspar, muscovite and pyrite, and mostly (93.7% in volume) coarser than sand grain size (50${\mu}{\textrm}{m}$). Strength, leaching and permeability tests have been performed on the test specimens of polymer concrete manufactured with various mixing proportions of tailings, unsaturated polyester resins(UPR), calcium carbonates, stone powder sludges and granite soils. Polymer concrete specimens with stone powder sludges or granite soils as fillers and aggregates indicate 2.5 to 3 fold higher flexural and compressive strengths and lower permeabilities than those with calcium carbonates, which shows their usability as a waterproof liner. Also, the polymer concrete liner with stone powder sludge fillers is more advisable in aspects of utilization of waste sludges than that with other fillers.

  • PDF

A Study on Chemical Speciations and Leaching Potential of Heavy Metals in Polluted Wastes Soils

  • Kim Hee-Joung;Yang Jae-E;Park Byung-Kil;Kong Sung-Ho;Lee Jai-Young;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 2005
  • Fractional compositions and leaching potentials of Cd, Cu and Zn were investigated in the soils which had been disposed with the metal processing wastes, tungsten mine tailings and low quality coal mine area. Total concentrations of metals in these soils were higher than in non-polluted paddy and upland soils. Fractions of Cd, Cu and Zn were mostly reducible, organic and residual forms, but varied with origins of wastes. Residual fraction was a predominant form in the nonpolluted soils. Leaching potentials of metals were higher in polluted soils than in non-polluted soils. Metals leached were higher at pH 4.0 than 7.0 and increased with the duration time. After 25 to 35 hrs, metals released from soils reached a pseudoequilibrium. Leaching potential of metals in non-polluted soils was low due to high percentage of residual fractions.

A Study on Management of Vegetation and Restoration in Abandoned Coal-Mine Waste Areas by Phytoremediation (식물정화재배법을 이용한 석탄폐석지 식생복원에 관한 연구)

  • Jun, Sang-Ho;Lee, Jong-Kyu;Park, Kill-Ok;Choi, Nam-Hee;Hong, Sung-Wook;Jung, Byoung-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.6
    • /
    • pp.71-85
    • /
    • 2011
  • In Okdong coal mine abandoned area, every year large amount of mine wastes have been swept away due to heavy rains in summer. Because pH of coal-mine waste is in the early 4, plant naturally does not grow there due to unfavorable condition for growing plant. This study had an experiment to grow plant for 6 months using Mycorrhizae which can be adapted well in acid soil. As a result of Experiment, In the infected experiment pot, 90% of the plants survived but in case of uninfected experiment pot, only 25% were alive. From Growth Experiment, it appeared that average stem length increase (cm/month), average fresh weight increase ($g^{fw}/month$), average dry weight increase ($g^{dw}/month$) were increased by 60%, 21%, 31% respectively. Especially, Mycorrhizae plays an important role in providing nutrients and water when seeding are established. Mycorrhizae prevents death caused by lack of nutrients and water and helps growth and development of plant when seeding are established in the early stage. This study proved that Mycorrhizae is comparatively effective in plant growth and prevention of erosion in coal-mine abandoned area.

A Study on the Recycling of Waste in the Limestone Mine (석탄석광산 폐석의 재활용 연구)

  • Chae, Young-Bae;Joeng, Soo-Bok;Koh, Won-Sik;Park, Je-Shin;Yang, Shi-Young
    • Resources Recycling
    • /
    • v.5 no.4
    • /
    • pp.25-31
    • /
    • 1996
  • The wastes ot l~mestone mines have been cause the extrar.ngance of the valuablz m e r a l s and destruction of the environment. Therefore, \\-c tied ta separation of calcite illid clay from the limestone mine wastes by rotntmg screen type separator made by ourselves in order to recyding such us a raw matcriala for cement maimfacture. CaO amtents in the separated coarse products increased from 37.36 wt% to 42+2 wt% at the condition ihat water content in wastes was lzss than 6wt%, the passing time of specimen in &amber was 15 semnds and the rotation speed was 6OLl qm. A process in order lo separate wastes effectively to having wide range aI part~dcs ize was cstablishcd and CaO contents of coarsc products through this process increased to 46.85 wt%. Tbis rcsult is insuEiicient to directly rcusing as a raw malerials for cement. However, it is supposed that coarse products would be able to be reuscd as a raw materials uf cement, if only it rs sclected dolomite in wastes, and really it may be possible in fields Othenvise, undcrsize products(less than 20 mm) would be able to recycling as a raw of cement bccause chcmicrl campasitions of thosc is kept almost constant v&cs on the overall process.

  • PDF

폐금속광산 주변 오염물질의 안정화 처리

  • Gwon Ji-Cheol;Jeong Myeong-Chae;Jeong Mun-Yeong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.41-44
    • /
    • 2006
  • The objective of this study was to evaluate the stabilization of As and heavy metals in tailings from the Samkwang Au-Ag mine with $Ca(OH)_2$. In order to evaluate the stabilization ability of As and heavy metals in the tailings, column test was implemented with various conditions as 1) particle size of $Ca(OH)_2$, 2) mixing method and 3) flow rate of eluents during 60 days. The results showed that addition with 5% of $Ca(OH)_2$ in 1kg of the tailings had the most effective ability of stabilization up to 95%. In addition, stabilization ability of As and heavy metals in tailings was enhanced using a fine powder of $Ca(OH)_2$. Therefore, stabilization technology can be used as a remediation of As and heavy metals in mine wastes including tailings and a nearby soils from abandoned metal mines.

  • PDF

Geochemical Experiment for Effective Treatment of Abandoned Mine Wastes (광산폐석의 효과적 처리를 위한 지화학적 연구)

  • 이진국;이재영
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.31-44
    • /
    • 1998
  • The geochemical experiments were carried out to investigate a removal effect of heavy metals in abdndoned metallic mine wastes, and to conceive a treatment techniques of them. In order to prevent contamination, experiment appature was made of acrylic acid resin and polyethylene which resist to acid and alkali. Experiment models are devided into four groups based on the system environments, distribution patterns and a kind of filling materials. The first group is background model(model I ) which is filled with waste only and opened to air. The second one is four layer group which is subdivided into two models, opened and closed systems, and the third mix group which is subdivided into three models based on mixing ratio of filling materials and system environment like a layered group. The forth is composed of two layer model, lower one composed of waste and upper one limestone chips. Solution drained from Model Ishows a high contents of heavy metals on the all terms of experiments. Among the models, however, the closed mix model V and Ⅶ show the most effective removal of heavy metals liberated from wastes. Models having different mixing ratios of filling materials on closed systems does not affect in heavy metal removal effect. But, the distribution patterns of filling materials affect very much on removal effect of heavy metals. The closed models with same constitution ratios and distribution patterns of filling materials show more and less effective removal to the open models.

  • PDF