• Title/Summary/Keyword: mine pollution

Search Result 155, Processing Time 0.025 seconds

Management Strategies for Heavy Metals to Secure the Crop Safety in Korea

  • Yang, J.E.;Kim, W.I.;Ok, Y.S.;Lee, J.S.
    • 한국환경농학회:학술대회논문집
    • /
    • 2009.07a
    • /
    • pp.93-115
    • /
    • 2009
  • There are growing public concerns over crop and food safeties due to the elevated levels of heavy metals grown in contaminated soil. Heavy metals are classified as the chemical harmful risks for crop and food safety. With implementation of GAP, crop safety is controlled by many regulatory options for soil, irrigation water and fertilizers. Any attempt to retard the metal uptake by crops may be the best protocol to secure crop and food safety. This article reviews the management strategies for heavy metals in view of crop safety in Korea and demonstrates results from the field experiments to retard metal translocation from soil to crops by using chemical amendments and soil layer management methods. Major source of soil pollution by heavy metals has been related with mining activities. Risk assessment revealed that rice consumption and groundwater ingestion in the abandoned mining areas were the major exposure pathways for metals to human and the heavy metal showed the toxic effects on human health. Chemical amendments such as lime and slag retarded Cd uptake by rice (Oryza sativa L.) by increasing soil pH, lowering the phytoavailable Cd concentration in soil solution, immobilizing Cd in soil and converting the available Cd fractions into non-available fractions. The soil layer management methods decreased the Cd uptake by 76% and Pb by 60%. Either reversing the surface layer with subsurface layer or immobilization of metals with layer mixing with lime was considered to be the practical option for the in-situ remediation of the contaminated paddy soils. Combination of chemical soil amendments and layer management methods was efficient to retard the metal bioavailability and thus to secure crop safety for heavy metals. This protocol seems to be cheap, relatively easy to practice and practical in the agricultural fields. However, a long term monitoring work should be followed to verify the efficiency of this protocol.

  • PDF

Study on the characteristic of liner and cover material by accelerating agent type (급결제 종류에 따른 광산 차수재의 특성 연구)

  • Cho, Yong-Kwang;Nam, Seong-Young;Lee, Yong-Mu;Kim, Chun-Sik;Seo, Shin-Seok;Jo, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • At present research on mining backfill materials is being carried out to prevent ground subsidence and breaking by underground cavern of exhausted mines. However, backfill materials can cause secondary environmental issues such as ground pollution. To solve these issues, liner and cover materials are constructed before backfill materials constructed, to inhibit toxic substances form moving to the surroundings. Liner and cover materials, however, should have an accelerating performance after construction and when the accelerating performance is degraded, the work efficiency can be lowered, and the construction cost can be increased, by many rebound content. Therefore, this study develops mining liner and cover materials, and evaluates their accelerating performance and physical properties of liner and cover materials by types and content of accelerating agent. In case of aluminate accelerating agent, it is mixed with more than 5% of liner and cover materials(binder/ratio); thus an accelerating performance satisfying Korean Industrial Standards(KS) occurs, and in case of alkali-free accelerating agent, when it is mixed with more than 7%(binder/ratio), accelerating performance satisfying KS occurs. The more the accelerating agent capacity increases, the more compressive strength decreases. In addition, it is confirmed that compressive strength of aluminate accelerating agent is more degraded than compressive strength of the alkali-free accelerating agent. It is also confirmed that drying shrinkage stability of the alkali-free accelerating agent is better than the drying shrinkage stability of the aluminate accelerating agent.

Removal of Ammonia Nitrogen, Manganese and Arsenic in The Ion Exchanged Natural Zeolite (이온 치환된 천연 제올라이트를 활용한 암모니아성 질소, Mn, As의 제거)

  • Lee, Kyung-Han;Kil, Bo-Min;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.29 no.5
    • /
    • pp.237-245
    • /
    • 2019
  • Ammonia nitrogen is well known as a substance that causes the eutrophication with a phosphorus in the water, because it is contained in the industrial wastewater, agricultural and the stockbreeding wastewater. In addition, manganese (Mn) and arsenic (As) are included in the mine treated water, etc., and are known as a source of water pollution. Natural zeolites are used to remove ammonia nitrogen in water but it have a low adsorption capacity. In order to improve the low adsorption capacity of the natural zeolite, ion substitution was carried out with $Na^+$, $Ca^{2+}$, $K^+$ and $Mg^{2+}$. The adsorption capacity and removal rate of ammonia nitrogen ($NH_4-N$) were the highest at 0.66 mg/g and 89.8% in $Na^+$ ion exchanged zeolite. Adsorption experiments of Mn and As were performed using ion exchanged zeolites. Ion exchanged zeolite with $Mg^{2+}$ showed high adsorption capacity and removal rates of Mn and As.

Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang

  • Zhenzhong Liu;Kaixuan Tan;Chunguang Li;Yongmei Li;Chong Zhang;Jing Song;Longcheng Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1476-1484
    • /
    • 2023
  • Laboratory experiments and point monitoring of reservoir sediments have proven that stable sulfate reduction (SSR) can lower the concentrations of toxic metals and sulfate in acidic groundwater for a long time. Here, we hypothesize that SSR occurred during in situ leaching after uranium mining, which can impact the fate of acid groundwater in an entire region. To test this, we applied a sulfur isotope fractionation method to analyze the mechanism for natural attenuation of contaminated groundwater produced by acid in situ leaching of uranium (Xinjiang, China). The results showed that δ34S increased over time after the cessation of uranium mining, and natural attenuation caused considerable, area-scale immobilization of sulfur corresponding to retention levels of 5.3%-48.3% while simultaneously decreasing the concentration of uranium. Isotopic evidence for SSR in the area, together with evidence for changes of pollutant concentrations, suggest that area-scale SSR is most likely also important at other acid mining sites for uranium, where retention of acid groundwater may be strengthened through natural attenuation. To recapitulate, the sulfur isotope fractionation method constitutes a relatively accurate tool for quantification of spatiotemporal trends for groundwater during migration and transformation resulting from acid in situ leaching of uranium in northern China.

Physio-Chemical Characteristics of Soil, Stream Sediment and Soil Water Contaminated by the Abandoned Coal Mine in Keumsan, Chungnam (충남(忠南) 금산(錦山) 폐탄광지역(廢炭鑛地域)의 토양(土壤), 하상퇴적물(河床堆積物) 및 토양수(土壤水)의 이화학적(理化學的) 특성(特性))

  • Min, Ell Sik;Kim, Myung Hee;Song, Suckhwan
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.3
    • /
    • pp.324-333
    • /
    • 1997
  • The research has been made for the effects of the pollution by the abandoned coal mine drainage on the physical and chemical properties of soil, stream sediment and soil water. The soils overspreaded by the abandoned coal don't develop solum and the bulk density is $1.83g/m^3$, compared with $1.14-1.38g/m^3$ in the other forest soils. The soil pH range in coal bearing region ie, from 4.01 to 4.11 and non-coal bearing soil range is from 5.03 to 5.13. Heavy metals such as As, Cr, Ni, Mo and Ba of coal bearing soils and polluted stream sediments have larger concentration than those of non-coal content and non-polluted. Especially As and Mo concentrations are largely high in coal bearing. The relative ratios $K_2O/Na_2O$ of geochemical elements are higher in coal bearing soil and polluted stream sediments than those of non-coal bearing soils and non-polluted stream sediments as well as black shales of the Changri Formation. However, $MgO+Fe_2O_3+TiO_2/CaO+K_2O$ are the opposite trends, so that the ratios are lower in the polluted regions. The soil water pHs in the polluted regions are the strong acid(pH3.4-4.2) and buffer capacity of the polluted soil is low because canons such as $Na^+$, $K^+$, $Mg^{+2}$are leached by the acidification.

  • PDF

The Geochemical Characteristics of the River Water in the Han River Drainage Basin (한강수계분지내 하천수의 지구화학적 특성)

  • 서혜영;김규한
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.130-143
    • /
    • 1997
  • To investigate geochemical characteristics and the sources of the dissolved ion species in the river water in the Han river drainage basin, samples were collected at 60 sites from the Han river drainage basin. The data for. pH, conductivity, TDS (total dissolved solid), temperature, and concentrations of dissloved ions were obtained as follows : (1) The geochemical characteristics of the surface water in the South and North Han river drainage basins are mainly controlled by bed rock geology in the drainage basin and in the main stream of the Han river considerably affected by anthropogenic pollution. The South Han river water samples have high concentrations of $Ca^{2+}$ (ave. 15.42 ppm), $Mg^{2+}$ (ave. 2.74 ppm), HC $O_3$$^{[-10]}$ (ave. 51.9 ppm), which evidently indicates that the bed rock geology in a limestone area mainly controls the surface water chemistry. The concentration of S $O_4$$^{2-}$ is remarkably high (SHR10-2 : 129.9 ppm) because of acid mine drainage from the metal and coal mines in the upper reaches of the South Han river. (2) The South Han river and the North Han river join the Han river. in the Yangsuri, Kyounggido and flow through Seoul metropolitan city. The mixing ratio is about 60:40 at the meeting point (sample number HRl0). (3) The result of factor analysis suggests that the pollution factor accounts for about 79% and the bed rock type factor accounts for about 7% of the data variation. This means that the geochemical characteristics of the Han river water mainly controlled by anthropogenic pollution in the South Han river and main stream of the Han river drainage basin. (4) The chemical data for four tributaries such as the Wangsukcheon, the Tancheon, the Zunuangcheon, and the Anyangcheon show that the concentration of pollution elements such as N $O_2$, C $l^{-}$, P $O_4$$^{3-}$, S $O_4$$^{2-}$ and Mn are high due to municipal waste disposal.

  • PDF

The Behavior of Dissolved and Particulate Phases of Trace Elements within the Watershed of Juam Reservoir (주암호 집수유역 내 용존 및 입자상 미량원소의 거동 특성)

  • Lee, Pyeong-Koo;Chi, Se-Jung;Youm, Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.405-425
    • /
    • 2008
  • In order to investigate the amounts of trace elements flowing into reservoir, and to elucidate the relationship between trace element mobility and fraction size, the stream water and sediment samples were collected from thirty-two sites of the 3rd or 4th order stream within watershed surrounding the Juam reservoir. Chemical analyses of trace elements (As, Cd, Cr, Cu, Ni, Pb and Zn) for all samples were completed, and additionally cationi and anion for stream water samples. Considering the distribution of rocks and contamination sources in watershed, the eight stream sediments were selected from typical sites representing study areas, and we determined the concentrations of trace elements according to size fractions ($2\;mm{\sim}200\;{\mu}m$, $200{\sim}100\;{\mu}m$, $100{\sim}50\;{\mu}m$, $50{\sim}20\;{\mu}m$ and < $20\;{\mu}m$). The correlation relationships between concentrations and size fractions of stream sediments were important to identify the hydro-geochemical behavior of trace elements that flow into Juam reservoir. Stream waters showed four water types (Ca-Mg-$HCO_3$, Ca-Na-$HCO_3$-Cl, Ca-Na-$HCO_3-SO_4$, Ca-Na-$HCO_3$) depending on pollution sources such as coal mine, metal mine, farm-land and dwellings. Concentrations of trace elements increased clearly with the decrease in size fractions of stream sediments. Concentrations of Cu, Pb and Zn increased dramatically in silt size (< $20\;{\mu}m$) fraction, while As had high concentrations in sand size ($2\;mm{\sim}100\;{\mu}m$) fraction in downstream sediments of metal mines. These indicate that Cu, Zn, and Pb moved into Juam reservoir easily in the adsorbed form on silt size grain in sediments, and As was transported as As-bearing mineral facies, resulting in its less chance to reach into Juam reservoir.

Identifying sources of heavy metal contamination in stream sediments using machine learning classifiers (기계학습 분류모델을 이용한 하천퇴적물의 중금속 오염원 식별)

  • Min Jeong Ban;Sangwook Shin;Dong Hoon Lee;Jeong-Gyu Kim;Hosik Lee;Young Kim;Jeong-Hun Park;ShunHwa Lee;Seon-Young Kim;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.306-314
    • /
    • 2023
  • Stream sediments are an important component of water quality management because they are receptors of various pollutants such as heavy metals and organic matters emitted from upland sources and can be secondary pollution sources, adversely affecting water environment. To effectively manage the stream sediments, identification of primary sources of sediment contamination and source-associated control strategies will be required. We evaluated the performance of machine learning models in identifying primary sources of sediment contamination based on the physico-chemical properties of stream sediments. A total of 356 stream sediment data sets of 18 quality parameters including 10 heavy metal species(Cd, Cu, Pb, Ni, As, Zn, Cr, Hg, Li, and Al), 3 soil parameters(clay, silt, and sand fractions), and 5 water quality parameters(water content, loss on ignition, total organic carbon, total nitrogen, and total phosphorous) were collected near abandoned metal mines and industrial complexes across the four major river basins in Korea. Two machine learning algorithms, linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were used to classify the sediments into four cases of different combinations of the sampling period and locations (i.e., mine in dry season, mine in wet season, industrial complex in dry season, and industrial complex in wet season). Both models showed good performance in the classification, with SVM outperformed LDA; the accuracy values of LDA and SVM were 79.5% and 88.1%, respectively. An SVM ensemble model was used for multi-label classification of the multiple contamination sources inlcuding landuses in the upland areas within 1 km radius from the sampling sites. The results showed that the multi-label classifier was comparable performance with sinlgle-label SVM in classifying mines and industrial complexes, but was less accurate in classifying dominant land uses (50~60%). The poor performance of the multi-label SVM is likely due to the overfitting caused by small data sets compared to the complexity of the model. A larger data set might increase the performance of the machine learning models in identifying contamination sources.

Exposure Assessment and Asbestosis Pulmonum among Inhabitants near Abandoned Asbestos Mines Using Deposited Dust (폐석면광산 주변 지역의 주택 침적먼지의 석면 검출과 석면폐증의 관련성)

  • Ahn, Hoki;Yang, Wonho;Hwangbo, Young;Lee, Yong Jin
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.6
    • /
    • pp.369-379
    • /
    • 2015
  • Objectives: The lack of reliable information on environmental pollution and health impacts related to asbestos contamination from abandoned mines has drawn attention to the need for a community health study. This study was performed to evaluate asbestos-related health symptoms among residents near abandoned asbestos mines located in the Chungcheong Provinces. In addition, exposure assessment for asbestos is needed although the exposure to asbestos was in the past. Methods: Past exposure to asbestos among inhabitants near abandoned asbestos mines was estimated by using surface sampling of deposited dust in indoor and outdoor residences. A total of 54 participants were divided into two groups with (34 cases) and without (20 controls) diseases related to asbestos. Surface sampling of deposited dust was carried out in indoor and outdoor residences by collecting 105 samples. Deposited dust for sampling was analyzed by polarization microscope (PLM) and scanning electron microscope?energy dispersive x-ray spectrometer (SEM-EDX) to detect asbestos. Subsequently, the elements of the deposited dust with asbestos were analyzed by SEM-EDX to assess the contribution of sources such as abandoned mines, slate and soil. Results: Among the 105 samples, asbestos was detected by PLM in 29 (27.6%) sampling points, and detected by SEM in 56 (48.6%) sampling points. Asbestos in indoor residences was detected by PLM in four sampling points, and by SEM in 12 sampling points. Asbestos detection in indoor residences may be due to ventilation between indoors and outdoors, and indicates long-term exposure. The asbestos detection rate for outdoor residences in the case group was higher than that in the control group. This can be explained as the case group having had higher exposure to asbestos, and there has been continuous exposure to asbestos in the control group as well as the case group. Conclusion: Past residential asbestos exposure may be associated with asbestosis among local residents near abandoned asbestos mines. Odds ratios were calculated for asbestos detection in outdoor residence by logistic regression analysis. Odds ratio between asbestos detection and asbestosis pulmonum was 3.36 (95% CI 0.90-12.53) (p=0.072), adjusting for age, sex, smoking status and work history with multi-variable logistic regression by PLM analysis method.

Sampling and Analysis of Soil Pore Water for Predicting the Diffusion and Behavior of Soil Pollutant Using Soil Lysimeter (토양라이시미터를 이용한 토양오염확산.거동 예측을 위한 토양공극수 채취와 분석)

  • Ko, Il-Won;Lee, Se-Yong;Kim, Kyoung-Woong;Lee, Jin-Soo
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.551-561
    • /
    • 2007
  • This case study is about the sampling and interpretation of soil pore water in order to understand and to predict the diffusion and behavior of soil pollution. For the measurement of polycyclic aromatic hydrocarbons(PAHs) in two representative hydrocarbon-contaminated sites, the extraction system of the soil pore water was set up with respect to soil depths and the behavior of contaminants was interpreted. The soil solution extraction system consisted of peristaltic pump, and extraction and sampling compartment, and can measure simultaneously the soil water pressure. The concentration of PAHs with respect to extraction pressure and time decreased due to dilution through soil pore water. Particularly, the concentration of PAHs was more reduced under the unsaturated oxic condition than saturated anoxic condition. Therefore, the soil solution extraction with respect to soil water pressure can interpret the extent of equilibrium between porewater and soil surface.