• 제목/요약/키워드: mine area

검색결과 568건 처리시간 0.024초

폐광산 주변 토양의 중금속 농도 분포에 관한 연구 (A Study on the Distributions of Heavy Metal Concentration in a Soil near Abandoned Mine)

  • 양천회;고장석
    • 한국안전학회지
    • /
    • 제13권4호
    • /
    • pp.186-191
    • /
    • 1998
  • This study was investigated the distributions of heavy metal concentration in a soil near abandoned mine in Chung thong Nam Do. The abandoned mines were Gubong gold mine and Sinsung coal mine. The results were as follows : 1) The concentration of As and Pb in Gubong mine were 309.2mg/kg and 1163.5mg/kg, that is exceeded the countermeasure criteria. Cadmium concentration was 14.70mg/kg, that is exceeded anxiety criteria. But all items in Sinsung coal mine was detected below criteria. 2) The heavy metals contamination of riverbed soil by gold mine showed higher than coal mine. 3) The heavy metals contamination in the vicinal paddy and dry field soil area was higher than other mine. Arsenic concentration was 29.29mg/kg, that is exceeded the anxiety criteria as 10.22mg/kg.

  • PDF

경남지구(慶南地區) 동광상(銅鑛床)의 종합개발(綜合開發)에 관(關)한 조사연구(調査硏究) (A Regional Study for Developments of Kyeongnam Copper Metallogenic Province)

  • 김선억
    • 자원환경지질
    • /
    • 제6권3호
    • /
    • pp.133-170
    • /
    • 1973
  • The metamorphosed belt on cherty and andesitic rocks of the Gyeongnam province area has been well known as the most important copper matallogenetic province in Korea and locally has been investigated by several geologists. This report is summarized about geology, occurrence of ore deposits, the study of the present status of mine developments and exploitations and the suggestions of future proposed of copper mine developments and harmoniously and reseonably planning of demands and supply of copper ore. For convenience of study the writer divided the survey region as 4 areas, according to the conditions of mine location. They are (1) Goseong copper area (2) Gunbuk-Haman copper area (3) Masan-Changwon copper area (4) Tongrae-Ilgwang copper area. The geology of the above 4 areas consits of Cretaceous Gyongsang System, which is divided into Silla series, Nakdong Series and Bulguksa Series. The former has intrusive and extrusive andesite and sedimentary formation, and the latter has dioritic and hornblende granite. Ore deposits which is mostly vein types are confined mostly in the andesite and cherty rocks of Silla and Nakdong Series. It is observed slight hydrothermal alteration, i. e. propylitization, chloritization, saussuritization and silicification. It seems that the ore was formed by hydrothermal solution and secondary enrichement. The ore minerals are mainly chalcopyrite and pyrite, with small amounts of malachite, azurite, chalcocite, cuprite, galena, and sphalerite, magnetite, tetrahedrite and etc.. The efficient plan of copper mine developments in surveyed region are as following; (a) Gyeongnam Copper districts are divided in 4 area as mentioned above. (b) Each area would be likely developed as group-working as one unit. For the sufficiently supplying a demand of electric copper, the importations of high grade copper ore in foreign country are invitable at present status of copper mine developments and exploitations.

  • PDF

폐금속광산 하부 농경지 토양의 중금속오염과 그 복구방법으로서 반전객토의 효율성 (Pollution of Heavy Metals in Paddy Soils Around the Downstream Area of Abandoned Metal Mine and Efficiency of Reversed Soil Method as Its Remediation)

  • 나춘기;이무성;정재일
    • 자원환경지질
    • /
    • 제30권2호
    • /
    • pp.123-135
    • /
    • 1997
  • In order to investigate the dispersion patterns and contamination level of heavy metals in the soil-ecosystem and to evaluate the efficiency of soil remediation by reversed soil method, soils and plants were collected from the Dongjin Au-Ag-Cu mine area and analysed for heavy metals. The dispersion patterns of heavy metals in soils and plants show that heavy metal pollutions caused by waste rump around Dongjin mine are mainly found in the vicinity of the waste rump and in the southward slanting of mine. Toxic metallic pollutants from the mine influence heavy metal contents in paddy soils in downstream area, and may be a potential sources of heavy metal pollution on crop plants. Soil samples collected from the remediated rice farming field by reversed method show similar levels of heavy metal content to those from the polluted rice farming field, but topsoil enrichment of heavy metals are not found. Heavy metal contents of the rice plants collected from remediated rice farming field are significantly lower than those from polluted rice farming field, and it suggests that the reversed soil method is effective for the reduction of bioavailability of heavy metals.

  • PDF

폐광산 인근 농경지 및 하천 퇴적토의 중금속 오염 특성 (Distribution of Metallic Elements Contamination in River Deposits and Farmland in the Vicinity of an Abandoned Korean Mine)

  • 이환;이윤진
    • 자원환경지질
    • /
    • 제53권2호
    • /
    • pp.133-145
    • /
    • 2020
  • 본 연구는 대한민국 충청도에 위치한 폐광산을 대상으로 오염경로를 분석하기 위해 갱구, 하천 퇴적토 및 인근 농경지의 중금속 오염 확산 특성을 조사하였다. 연구대상지역에서 갱내수 유출지점으로부터 약 61 m까지 적화현상이 관찰되었고 총 1800 ㎥의 폐석 유실구간이 확인하였다. 갱내수는 우기기간동안 pH 4.9, 황산염의 농도 1557.8 mg/L를 나타냈다. 동일한 기간에 황산염 농도는 하천시료에서 평균 773.6 mg/L으로 나타났다. 하천에서 채취한 황갈색 시료를 분석한 결과 침철석과 페리하이드라이트(ferrihydrite)로 나타났다. 본 연구지역의 주요 오염원은 폐석 손실에 의한 것으로 여겨지며 토양오염우려기준을 초과한 오염 필지는 총 10,297 ㎡로 산정되었다.

Contamination of Stream and Reservoir Waters with Arsenic from Abandoned Gold Mine

  • Lee, Jin-Yong;Kim, Hee-Joung;Yang, Jai-E.
    • Environmental Engineering Research
    • /
    • 제13권1호
    • /
    • pp.33-40
    • /
    • 2008
  • Levels of arsenic in stream and reservoir waters affected by an abandoned gold mine were examined. The abandoned mine has been left without proper civil and remedial works preventing potential environmental hazards. Field and laboratory chemical analyses revealed that the stream waters downgradient from the mine area were severely contaminated with arsenic and furthermore the reservoir water, 2-3 km away from the mine, also contained substantial levels of As, far exceeding the Korean stream water standard. Relatively higher pH values (6.5-9.4) enhanced mobility of As and mainly sustained substantial As concentration in waters. Chemistries of the stream water, groundwater and reservoir water were dominated by two main factors including effects of mine effluent and anthropogenic agricultural activities. Considering that there has been a substantial As input to the reservoir and the reservoir water has been used for agricultural and domestic uses, immediate remedial works are essentially required.

석탄폐광지에서의 식생기반재 처리별 수목 초기 생육상황 비교 (Comparison of Seedling Growth by Treatments of Vegetation Basis in an Abandoned Coal Mine Area)

  • 정용호;이임균;임주훈;서경원;이충화
    • 한국환경복원기술학회지
    • /
    • 제13권6호
    • /
    • pp.87-96
    • /
    • 2010
  • This study was conducted to select environmentally-friendly and low-cost mulching material that could replace soil molding which can be used to restore vegetation in an abandoned coal mine area. To this end, we established 20 experimental plots (4m ${\times}$ 10m in size) on the steep, south west-facing slope of the abandoned coal mine area in Hwangji-Dong, Taebaek City, Gangwon Province in April 2006. We planted two-year-old 1,600 seedlings (at intervals of 0.6m ${\times}$ 0.8m) of drought-resistant tree species including Betula schmidtii, Betula platyphylla var. japonica, Amorpha fruticosa, and Quercus mongolica in the plots. After planting seedlings, mulching was applied by using five different kinds of material such as HWAP (Teracotem), peat moss, straw mats, wood chips, and control (no-mulching) and the effects of different mulching material on the survival rate and growth performance were compared. Three years after planting, the survival rate was the highest in wood chip mulching, followed by straw-mat, peat moss, HWAP, and control. The survival rate was the highest in Quercus mongolica, followed by Betula schmidtii, Betula platyphylla var. japonica, and Amorpha fruticosa. Meanwhile the height growth was the best in Betula platyphylla var. japonica, followed by Betula schmidtii, Quercus mongolica, and Amorpha fruticosa. The height growth of seedlings was the best in HWAP mulching, followed by peat moss, woody chips, straw mat, and control. From an economic point of view, wood chips are considered to be the best mulching material. The results showed that mulching without soil molding and/or mixing applications would be effective for restoring vegetation in an abandoned coal mine areas.

(주)동원 사북광업소 갱내수 정화를 위한 물리화학처리시설에 대한 연구 (A Study of Physicochemical treatment facility for Purifying the Mine Water in Dongwon Sabuk Mine., Ltd.)

  • 안종만;이용복;최상일
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권4호
    • /
    • pp.21-29
    • /
    • 2010
  • As the target area of this study, the coal mine site of Dongwon Sabuk mine.,ltd. is located in the remote mountainous region. To purify the acid mine water contaminated with heavy metals, a pilot-scale plant was built at the surrounded area of a mine shaft and operated to simulate active treatment system that could not only possibly setup the facility in a small available area, but also has a high efficiency. According to the various conditions of basin sequence, existence of sludge return, and lime injection position, six different types of treatment series were investigated in terms of treatment efficiency. As a result, the aluminum concentrations of the most effluents were in the range of 0.005~0.030 mg/L, which was too low to compare. The manganese concentration in the treated water were in the range of 3~9 mg/L, not following any regular trend. As found in the results of iron concentration, the case of addition of oxidation and sludge return steps showed higher efficiency than the others. As a standpoint of the installation of full-scale physicochemical treatment facility, the experimental results showed that the batch of oxidation and high density sludge return processes are existed and neutralization was followed by oxidation, had a stable treatment efficiency.

중부지역에 위치한 폐광산 주변의 오염물질 이동성 평가 (Evaluation about Contaminant Migration Near Abandoned Mine in Central Region)

  • 이종득;김태동;전기석;김휘중
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권6호
    • /
    • pp.29-36
    • /
    • 2010
  • Several mines including Namil, Solim and Jungbong which are located in the Gyeonggi and Kangwon province have been abandoned and closed since 1980 due to "The promotion policy of mining industry". An enormous amount of mining wastes was disposed without proper treatment, which caused soil pollution in tailing dam and ore-dressing plant areas. However, any quantitative assessment was not performed about soil and water pollution by transporting mining wastes such as acid mine drainage, mine tailing, and rocky waste. In this research, heavy metals in mining wastes were analyzed according to leaching method which used 0.1 N HCl and total solution method which used Aqua-regia to recognize the ecological effect of distance from hot spot. We sampled tailings, rocky wastes and soils around the abandoned mine. Chemical and physical parameters such as pH, electrical conductivity (EC), total organic carbon (TOC), soil texture and heavy metal concentration were analyzed. The range of soil's pH is between 4.3 and 6.4 in the tailing dam and oredressing plant area due to mining activity. Total concentrations of As, Cu, and Pb in soil near ore dressing plant area are 250.9, 249.3 and 117.2 mg/kg respectively, which are higher than any other ones near tailing dam area. Arsenic concentration in tailing dams is 31.0 mg/kg, which is also considered as heavily polluted condition comparing with the remediation required level(RRL) in "Soil environment conservation Act".

가학광산 주변 중금속 함유 토양입자의 이화학적·광물학적 특성연구 (Characterization of Mineralogical and Physicochemical Properties of Soils Contaminated with Metals at Gahak Mine)

  • 이충현;이선용;박찬오;김종원;이상환;박미정;정문영;이영재
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권4호
    • /
    • pp.83-89
    • /
    • 2015
  • Soil samples collected in an area of Gahak Mine were investigated for the characterization of mineralogical and physicochemical properties of contaminants in soils. It is found that soils in the study area are contaminated by lead (Pb), copper (Cu), zinc (Zn), cadmium (Cd), in which their concentrations are 595.3 mg/kg, 184.9 mg/kg, 712.8 mg/kg, and 10.64 mg/kg, respectively. All the concentrations exceed the concern criteria of Korean standard. Upon distribution patterns of metals identified by the sequential extraction procedure, our results show that more than 50% of metals are found as a residual type, and 30% are accounted for the association of Fe/Mn oxides. Interestingly, XRD results show that minium (Pb3O4) and cuprite (Cu2O) are identified in the soil samples, suggesting that the sources of the contaminants for Pb and Cu are these minerals. In SEM images, tens of µm of Pb oxides and Pb silicate-minerals are observed. We, therefore, note that the contamination of metals in the study area results from the direct influx and disturbance of tailings. Our findings indicate that the characterization of physicochemical and mineralogical properties of contaminated soils is a critical factor and plays an important role in optimizing recovery treatments of soils contaminated in mine development areas.

Assesment of soil pollution by Abandoned Mines wastes

  • Kim Hee-Joung;Yang Jae-E.;Lee Jai-Young;Park Beang-Kil;Kong Sung-Ho;Jun Sang-Ho
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 총회 및 춘계학술발표회
    • /
    • pp.363-370
    • /
    • 2005
  • There are approximately 2,000 metallic mines which have been abandoned in Korea. Most of the mines are located in the watershed area, which is main source of drinking water for Seoul Metropolitan area. Untreated mining wastes are remained around abandoned mines in study area. These mining wastes, flowing into farmland and stream in the downstream of abandoned mines, would cause water and soil pollution. The mining waste samples from Guedo mine, Manjung mine and Joil mine recently abandoned were collected for the evaluation of the potential of water pollution by mine waste. Index of geoaccumulation($M\"{u}ller$, 1979), fractional composition and removal efficiency of some heavy metals by different concentration of HCl treatment were analyzed. Index of geoaccumulation of Cd, Pb, Zn, Cu, Ni and Cr are 6, $4{\sim}6,\;0{\sim}6,\;4{\sim}5$, 2 and 0 respectively. Index of geoaccumulation of Cd, Pb, Zn and Cu reveals the mining wastes has high pollution pottential in the area. Organic fraction of Cu, reducible fraction of Pb, residual fraction of Ni and Zn were the most abundant fraction of heavy metals in mining wastes.

  • PDF