• 제목/요약/키워드: milling tool

검색결과 681건 처리시간 0.035초

Mechanical Alloying Effect in Immiscible Cu-Based Alloy Systems.

  • Lee, Chung-Hyo;Lee, Seong-Hee;Kim, Ji-Soon;Kwon, Young-Soon
    • 한국분말재료학회지
    • /
    • 제10권3호
    • /
    • pp.164-167
    • /
    • 2003
  • The mechanical alloying effect has been studied on the three Cu-based alloy systems with a positive heat of mixing. The extended bcc solid solution has been formed in the Cu-V system and an amorphous phase in the Cu-Ta system. However, it is round that a mixture of nanocrystalline Cu and Mo Is formed in the Cu-Mo system. The neutron diffraction has been employed at a main tool to characterize the detailed amorphization process. The formation of an amorphous phase in Cu-Ta system can be understood by assuming that the smaller Cu atoms preferentially enter into the bcc Ta lattice during ball milling.

절삭과 적층을 복합적으로 수행하는 하이브리드방식 쾌속시작시스템을 위한 층분할 (Layer Generation for Hybrid Rapid Prototyping System Using Machining and Deposition)

  • 이건우;강재관;주호
    • 한국CDE학회논문집
    • /
    • 제10권6호
    • /
    • pp.421-431
    • /
    • 2005
  • This paper introduces a new approach for saving build time of hybrid rapid prototyping by decomposing a part into minimum number of layers. In the hybrid rapid prototyping, a part of a complicated shape is realized by adding layers of a simpler shape, each of which is obtained by machining a sheet of constant thickness from its top and bottom surfaces. Thus it is desired to decompose a given part into the minimum number of layers while guaranteeing each layer to be fabricated from the given sheets using a 3-axis milling machine. To satisfy these requirements, a concave edge-based algorithm is proposed to decompose a part into layers by considering the tool accessibility, the total number of layers, and the allowable sheet thickness.

보링커터의 세장비에 따른 구멍 정밀도 변화에 관한 연구 (A Study on the Change in Hole Precision with Slenderness Ratio of Boring Cutter)

  • 천세호
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.7-12
    • /
    • 2017
  • It is assumed that the buckling and cutting conditions depending on the slenderness ratio will affect the machining quality of the rotary boring tool mounted on a milling machine. In this study, the boring cutter was designed and fabricated to precisely create the Ø30 hole. Through the performance evaluation, the accuracy of the hole according to the slenderness ratio and cutting conditions was analyzed, and the following conclusions were obtained. The higher the RPM, the smaller the change in the working diameter, and the smaller the hole. Next, the smaller the slenderness ratio, the smaller the change in straightness due to the change in cutting conditions. Finally, the slenderness ratio also affects the tendency for changes in the concentricity. The larger the slenderness ratio, the more sensitive the concentricity to changes in cutting conditions.

절삭력 계수를 통한 마이크로 가공의 절삭 특성 분석 (Analysis of cutting characteristics in micro machining using cutting force coefficient)

  • 이한울;조동우;박종권
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.483-488
    • /
    • 2005
  • The complex three-dimensional miniature components are needed for a wide range of applications from the aerospace to the biomedical industries. To manufacture these products, micro machining that can make a high aspect ratio part and has good accuracy is widely researched. In this paper, cutting characteristics were analyzed in micro machining using cutting force coefficients, which are the specific cutting force for normal and frictional direction of rake surface. From measured cutting force in micro end milling, cutting condition independent cutting force coefficients were determined and used for analysing the characteristics of micro cutting. Using the cutting force coefficient, 써써써.

  • PDF

Al합금의 고속 원통가공에서 발생하는 치수오차와 진원도의 영향 고찰 (A Study on the Effect of Dimensional Errors and Roundness in High Speed Cylindrical Machining Al-alloy)

  • 윤종학;서성원;이헌철
    • 한국공작기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.17-24
    • /
    • 2001
  • Recently, the requirements for high precision and efficiency machining are gradually increased to raise international competitiveness at the industrial fields of die and molds. This trend had made effects on the industrial fields in Korea and which needs fur studying of high precision and efficiency machining. This study is to investigate the effects of the non-out of end mill in the external cylindrical machining operated by solid carbide end mills with Al-alloy in high speed machining center relating to high spindle revolution and frost fred per minute on the dimensional precision, roundness of workpiece. From the results of experimentations followings are obtained; when Al-alloy is processed by the external cylindrical cutting of end milling through the high speed revolution, if the spindle revolution is higher relating to radial depth of cut, feed per tooth in very lower situation, finally, productivity can be raised because high precision and quality products are machined high efficiently.

  • PDF

주축 변위 신호를 이용한 밀링가공의 채터 감시 (Chatter Monitoring of Milling Process using Spindle Displacement Signal)

  • 장훈근;김일해;장동영
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.140-145
    • /
    • 2007
  • To improve productivity of a metal cutting process, it is required to monitor machining stability in real time. Since cutting environment is harsh against sensing conditions due to vibration, chip, and cutting fluid, etc., it is necessary to develop a robust and reliable sensing system for the practical application. In this work, a chatter monitoring system was developed and its effectiveness was proved. Spindle displacement caused by cutting was selected as a main monitoring parameter. A cylindrical capacitive displacement sensor was adopted. Chatter frequencies were identified through modal analysis. To quantify chatter vibrations, chatter correlation coefficient was introduced. The identification of the monitoring system showed a good agreement with the result of experiment.

밀링공정중 절삭조건 변화에 따른 절삭력 추종제어를 위한 DSP보드 응용 (DPS Board Appication for Regulation of Cutting Force under Varying Cutting Conditions during Milling Process)

  • 오영탁;권원태;주종남
    • 한국정밀공학회지
    • /
    • 제16권3호통권96호
    • /
    • pp.38-46
    • /
    • 1999
  • Spindle motor current is used to estimate the cutting force indirectly and control the feed rate for the cutting force regulation. The proposed algorithm is implemented to a DSP board based hardware for the industrial application. The software to make POP terminal communicate with the DSP board and POP server is coded under Windows 95 environment. Experiments under varying cutting conditions show that the DSP board recognizes the information of installed cutting tool and cutting conditions delivered from the POP server to use them for the proper control of the feed rate. The cutting force is regulated well during machining of tapered or stepped workpiece and circular shaped workpiece as well.

  • PDF

CFRP 구멍가공 시 공구의 절삭성능에 관한 연구 (Cutting Performance of Tool in work of CFRP Hole)

  • 신형곤;강기원;김영철;문정수;황성국
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.941-946
    • /
    • 2018
  • Currently, due to the development of technology, the industry is proceeding with the development of advanced materials with high performance such as light weight, heat resistance and electric conductivity. Carbon Fiber Reinforced Plastics (CFRP) is an excellent material with high heat resistance, high strength and thermal shock resistance. In order to obtain excellent hole shape in CFRP drilling, we compared the modified drill shape and the conventional carbide drill. On the other hand, we determine the proper helix angle by observing the CFRP surface according to the helix angle at the trimming of the end mill proceeding after the hole machining.

DSP를 이용한 밀링공구의 실시간 파단검출에 관한 연구 (A Study on Real Time Detection of Tool Breakage in Milling Operation Using a DSP)

  • 백대균;고태조;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.20-25
    • /
    • 1994
  • 절삭공정의 자동화의 무인화를 달성하기 위해서는 경험을 가진 작업자의 역활이 컴퓨터에 의한 자동적인 감시 및 제어시스템으로 대체되어야 한다. 특히 공작기계에서 발생할 수 있는 자체의 고장이나 절삭과정중에 발생하는 이상상태를 실시간으로 검출하여 원인을 자동적으로 진달 할 수 있어야 한다. 절삭가공 공작기계의 이상상태 감시 및 진단의 현황을 살펴보면 주로 공구상태의 감시와 채터 감시가 연구의 대상 이 되고 있다. 공구상태의 감시는 공구의 마모와 파단을 검출하고 있다. 이 중에서 공구의 파단은 발생 즉시 실시간으로 감시되어야 한다. 밀링작업에서는 1회전 이내의 공구회전에 파단을 검출하고 기계를 정지시켜야 한다. 최근의 절삭가공에서는 절삭공구로 강력절삭을 위해 고경도 재료를 사용함에 따라 공구의 파단이 빈번하게 발생하고 있다. 정면밀링과 같은 단속절상에서는 절삭날이 큰 충격을 받으므로 더욱 파단에 대한 감시가 필요하다.

  • PDF

PC-based NC 공작기계의 소프트웨어 보간기 개발 (Development of Software Interpolators for PC-based NC Machine Tools)

  • 양민양;홍원표
    • 한국정밀공학회지
    • /
    • 제13권12호
    • /
    • pp.99-105
    • /
    • 1996
  • Increasing demands on precision machining of free-form surfaces have necessitated the tool to move not only with position error as small as possible, but also with smoothly varying feedrates. In this paper, linear, circular and spline interpolators were developed in reference-pulse type using PC. M-SAM and M-DAM were designed by the comparison and analysis of previous interpolation methods. Spline interpolator was designed to follow the free-form curves. To apply to the real cutting process, constant feedrate compensation and acceleration-deceleration compensation were conceived. Finally, its performance was tested using retrofitted milling machine. As a result, new interpolation algorithm is favorable in precision machining of free-form curves.

  • PDF