• Title/Summary/Keyword: milling experiment

Search Result 204, Processing Time 0.024 seconds

Mechanical and Operational Factors Affecting the Efficiency of Rice Polishing Machines (정미기의 능률에 미치는 기계적 요인및 작동조건에 관한 연구)

  • 노상하;최재갑
    • Journal of Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.17-48
    • /
    • 1976
  • In analyzing the operational characteristics of a rice whitening machine, the internal radial pressure of the machine was measured using strain gage equipment. Changes in cylinder and feed screw configurations, screen type, cylinder speed and counter-pressure levels were examined to determine their impact on the quality and quantity of milled rice and the performance of the machine. The results are summarized as follows: 1. The internal radial pressure in the whitening chamber varied with the surface condition of the grain being processed. During the first or second pass through the machine, pressure was relatively low, reached a maximum after two to three passes with combinations I and II, three to six with combination III and then began to fall. 2. The pitch of the feed screw and the size of the feed gate opening which determine the rate of entry of grain into the whitening chamber, appeared to be the most important factor aff-::cting the degree of radial pressure, quality and quantity of milled rice and the efficiency of the machine. Using a feed screw with a wide pitch (4.8cm), radial pressure was relatively high and head rice recovery ratio \vere quite low. In this case capacity and machine effic\ulcorneriency were much higher than obtained when using a feed screw with a narrow pitch (2.3cm). Very significant responses in radial pressure, head rice recovery rates and machine capacity were observed with changes in cylinder speed and counter-pressure levels when using the wide pitch feed screw. 3. The characteristics of the screen which surrounds the whitening chamber had an important effect on whitening efficiency. The existence of small protuberances on the original screen resulted in significant increases in both machine capacity and efficiency but without a significant decrease in head rice recovery or development of excessive radial pressure. Further work is required to determine the effects of screen surface conditions and the shape of the cylinderical steel roller on the rate of bran removal, machine efficiency and recovery rates. The size of the slotted perforations 0:1 the screen affects total milled rice recovery. The opening size on the original screen was fabricated to accommodate the round shape of Japonica rice varieties but was not suitable for the more slender Indica type. Milling Indica varieties with this screen resulted in a reduction in total milled rice recovery. 4. An increase in cylinder speed from 380 to 820 rpm produced a positive effect on head rice recovery for all machine combinations at every level of counter-pressure used in the tests. Head rice recovery was considerably lower at 380rpm using a wide screw pitch when compared to the results obtained at speeds from 600 to 820 r.p.m. The effects of cylinder speed On radial pressure, capacity and machine efficiency showed contrasting results, depending on the width of the feed screw pitch. With a narrow feed screw pitch (2.3cm), a direct proportional relationship was observed bet\ulcornerween cylinder speed and both radial pressure and machine efficiency. In contrast, using a 4.8 centimeter pitch feed roller produced a series of inverse relationships between the above variables. Based on the results of this study it is recommended when milling Indica type long grain rice varieties that the cylinder speed of the original machine be increased from 500-600 rmp up to a minimum of 800 rpm to obtain a greater abrasive effect between the grain and the screen. The pitch of the feed screw should be also reduced to decr\ulcornerease the level of internal radial pressure and to obtain higher machine efficiency and increased quality of milled rice with increased cylinder speeds. Further study on the interaction between cylinder speed and feed screw pitch is recommended. 5. An increase in the counter pressure level produced a negative effect On the head rice recovery with an increase in radial pressure, capacity, and machine efficiency over all combinations and at every level of cylinder speed. 6. Head rice recovery rates were conditioned primarily by the pressure inside the whitening chamber. According to the empirical cha racteristics curve developed in this study, the relationships of head rice recovery ($Y_h$) and machine capacity ($Y_c$/TEX>) to internal radial pressure ($X_p$) followed an inverse quadratic function and a linear function respectively: $$Y_h^\Delta=\frac{1}{{1.4383-0.2951X_p^\ast+0.1425X_p^{\ast\ast}}^2} , (R^2=0.98)$$ $$Y_c^\Delta=-305.83+374.37X_p^{\ast\ast}, (R^2=0.88)$$ The correlation between capacity and power consumption per unit of brown rice expressed in the following exponential function: $$Y_c^\Delta=1.63Y_c^{-0.7786^\{\ast\ast}, (R^2=0.94)$$ These relationships indicate that when radial pressure increases above a certain range (1. 6 to 2.0 kg/$cm^2$ based On the results of the experiment) head ricerecovery decrea\ulcornerses in a quadratic relation with a inear increase in capacity but without any decrease in power consump tion per unit of brown rice. On the other hand, if radial pressure is below the range shown above, power consumption increases dramatically with a lin\ulcornerear decrease in capacity but without significant increases in head rice recovery. During the operation of a given whitening machine, the optimum radial pressure range or the correct capacity range should be selected by controlling the feed rate and/or counter-pressure keeping in mind the condition of the grain, particulary the hardness. It was observed that the total number of passes is related to radial pessure level, feed rate and counter-pressure level. The higher theradial pressure the fewer num\ulcornerber of pass required but with decreased head rice recovery. In particular, when using high feed rates, the total number of passes should be increased to more than three by reducing the counter-pressure level to avoid decreaseases in head rice recovery (less than 65 percent head rice recovery on the basis of brown rice) at every cylinder speed. 7. A rapid rise in grain temperature seemed to have a close relationship with the pressure generated inside the whitening chamber and, subsequently with head rice reco\ulcornervery rates. The higher the rate of increase, the lower were the resulting head rice recoveries.

  • PDF

Agronomic and End-use Quality Analysis of 'AromaT', a Black Rice (Oryza Sativa L.) Variety with Floury Endosperm (분질배유를 지니는 흑미, '아로마티'의 주요 농업형질 및 가공적성 평가)

  • Ha, Su Kyung;Mo, Young-Jun;Jeong, Jong-Min;Lee, Hyun-Sook;Kim, Jinhee;Seo, Woo-Duck;Jeong, Ji-Ung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.9-16
    • /
    • 2022
  • Rice is one of the most important staple foods in Wnju, Jeonbuk, South Korea. However, rice consumption has dramatically decreased as eating habits have diversified owing to rapid economic growth. Recently, floury endosperm rice varieties have been developed to invigorate the rice processing industry, because dry-milled rice flour is economically and environmentally suitable for massive rice flour distribution. The National Institute of Crop Science has developed 'AromaT', an early-maturing black rice with floury-endosperm, suitable for tea and dry milling. 'AromaT' was derived from a cross between 'Suweon542' as the floury endosperm source and 'Heugjinju' as the black and aromatic source. In this study, 'AromaT' and its parents, 'Suweon542' and 'Heugjinju', were analyzed for agronomic traits, anthocyanin content, and their major physicochemical properties by different planting date. The field experiment was conducted in Wanju, Jeollabuk-do Province, South Korea, in 2019. The transplanting dates were May 30 (ordinary season), June 25 (double-cropping season), and July 10 (late season). The yield performance of brown rice 'AromaT' was 330 kg/10 a in the double-cropping cultivation method and was the highest among the transplanting dates. The floury endosperm of 'AromaT' was derived from 'Suweon542' containing 'flo7', located on chromosome 5 and known to control floury endosperm. With the late planting date, the anthocyanin content of 'AromaT' was 570.5 mg/100 g, much higher than that of 'Heugjinju' (376.3 mg/100 mg). The brown rice of 'AromaT' also exhibited the pop-corn-flavoring 2-acetyl-1-pyrroline, exclusively detected in aroma rice varieties. The average particle sizes of 'AromaT' and 'Suweon542' were 67.12 ㎛ and 70.9 ㎛, respectively, lower than that of 'Heugjinju' (95.5 ㎛) with a black transparent endosperm. The average damaged starch content of 'AromaT' was 8.1%, lower than that of 'Heugjinju' (10.05%) and Suweon542 (9.5%). As a result, 'AromaT' with high anthocyanin content, fine particle size, and low damaged starch content is expected to provide a new rice material in various processing fields.

Studies on the Varietal Difference in the Physiology of Ripening in Rice with Special Reference to Raising the Percentage of Ripened Grains (수도 등숙의 품종간차이와 그 향상에 관한 연구)

  • Su-Bong Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.14
    • /
    • pp.1-40
    • /
    • 1973
  • There is a general tendency to increase nitrogen level in rice production to insure an increased yield. On the other hand, percentage of ripened grains is getting decreased with such an increased fertilizer level. Decreasing of the percentage is one of the important yield limiting factors. Especially the newly developed rice variety, 'Tongil' is characterized by a relatively low percentage of ripened grains as compared with the other leading varieties. Therefore, these studies were aimed to finding out of some measures for the improvement of ripening in rice. The studies had been carried out in the field and in the phytotron during the period of three years from 1970 to 1972 at the Crop Experiment Station in Suwon. The results obtained from the experiments could be summarized as follows: 1. The spikelet of Tongil was longer in length, more narrow in width, thinner in thickness, smaller in the volume of grains and lighter in grain weight than those of Jinheung. The specific gravity of grain was closely correlated with grain weight and the relationship with thickness, width and length was getting smaller in Jinheung. On the other hand, Tongil showed a different pattern from Jinheung. The relationship of the specific gravity with grain weight was the greatest and followed by that with the width, thickness and length, in order. 2. The distribution of grain weight selected by specific gravity was different from one variety to another. Most of grains of Jinheung were distributed over the specific gravity of 1.12 with its peak at 1.18, but many of grains of Tongil were distributed below 1.12 with its peak at 1.16. The brown/rough rice ratio was sharply declined below the specific gravity of 1.06 in Jinheung, but that of Tongil was not declined from the 1.20 to the 0.96. Accordingly, it seemed to be unfair to make the specific gravity criterion for ripened grains at 1.06 in the Tongil variety. 3. The increasing tendency of grain weight after flowering was different depending on varieties. Generally speaking, rice varieties originated from cold area showed a slow grain weight increase while Tongil was rapid except at lower temperature in late ripening stage. 4. In the late-tillered culms or weak culms, the number of spikelets was small and the percentage of ripened grains was low. Tongil produced more late-tillered culms and had a longer flowering duration especially at lower temperature, resulting in a lower percentage of ripened grains. 5. The leaf blade of Tongil was short, broad and errect, having light receiving status for photosynthesis was better. The photosynthetic activity of Tongil per unit leaf area was higher than that of Jinheung at higher temperature, but lower at lower temperature. 6. Tongil was highly resistant to lodging because of short culm length, and thick lower-internodes. Before flowering, Tongil had a relatively higher amount of sugars, phosphate, silicate, calcium, manganese and magnesium. 7. The number of spikelets of Tongil was much more than that of Jinheung. The negative correlation was observed between the number of spikelets and percentage of ripened grains in Jinheung, but no correlation was found in Tongil grown at higher temperature. Therefore, grain yield was increased with increased number of spikelets in Tongil. Anthesis was not occurred below 21$^{\circ}C$ in Tongil, so sterile spikelets were increased at lower temperature during flowering stage. 8. The root distribution of Jinheung was deeper than that of Tongil. The root activity of Tongil evaluated by $\alpha$-naphthylamine oxidation method, was higher than that of Jinheung at higher temperature, but lower at lower temperature. It is seemed to be related with discoloration of leaf blades. 9. Tongil had a better light receiving status for photosynthesis and a better productive structure with balance between photosynthesis and respiration, so it is seemed that tongil has more ideal plant type for getting of a higher grain yield as compared with Jinheung. 10. Solar radiation during the 10 days before to 30 days after flowering seemed enough for ripening in suwon, but the air temperature dropped down below 22$^{\circ}C$ beyond August 25. Therefore, it was believed that air temperature is one of ripening limiting factors in this case. 11. The optimum temperature for ripening in Jinheung was relatively lower than that of Tongil requriing more than $25^{\circ}C$. Air temperature below 21$^{\circ}C$ was one of limiting factors for ripening in Tongil. 12. It seemed that Jinheung has relatively high photosensitivity and moderate thermosensitivity, while Tongil has a low photosensitivity, high thermosensitivity and longer basic vegetative phase. 13. Under a condition of higher nitrogen application at late growing stage, the grain yield of Jinheung was increased with improvement of percentage of ripened grains, while grain yield of Tongil decreased due to decreasing the number of spikelets although photosynthetic activity after flowering was. increased. 14. The grain yield of Jinheung was decreased slightly in the late transplanting culture since its photosynthetic activity was relatively high at lower temperature, but that of Tonil was decreased due to its inactive photosynthetic activity at lower temperature. The highest yield of Tongil was obtained in the early transplanting culture. 15. Tongil was adapted to a higher fertilizer and dense transplanting, and the percentage of ripened grains was improved by shortening of the flowering duration with increased number of seedlings per hill. 16. The percentage of vigorous tillers was increased with a denser transplanting and increasing in number of seedlings per hill. 17. The possibility to improve percentage of ripened grains was shown with phosphate application at lower temperature. The above mentioned results are again summarized below. The Japonica type leading varieties should be flowered before August 20 to insure a satisfactory ripening of grains. Nitrogen applied should not be more than 7.5kg/10a as the basal-dressing and the remained nitrogen should be applied at the later growing stage to increase their photosynthetic activity. The morphological and physiological characteristics of Tongil, a semi-dwarf, Indica $\times$ Japonica hybrid variety, are very different from those of other leading rice varieties, requring changes in seed selection by specific gravity method, in milling and in the cultural practices. Considering the peculiar distribution of grains selected by the method and the brown/rough rice ratio, the specific gravity criterion for seed selection should be changed from the currently employed 1.06 to about 0.96 for Tongil. In milling process, it would be advisable to bear in mind the specific traits of Tongil grain appearance. Tongil is a variety with many weak tillers and under lower temperature condition flowering is delayed. Such characteristics result in inactivation of roots and leaf blades which affects substantially lowering of the percentage of ripened grains due to increased unfertilized spikelets. In addition, Tongil is adapted well to higher nitrogen application. Therefore, it would be recommended to transplant Tongil variety earlier in season under the condition of higer nitrogen, phosphate and silicate. A dense planting-space with three vigorous seedlings per hill should be practiced in this case. In order to manifest fully the capability of Tongil, several aspects such as the varietal improvement, culural practices and milling process should be more intensively considered in the future.he future.

  • PDF

Study on the Salt Tolerance of Rice and Other Crops in Reclaimed Soil Areas. -6. On the Effects of Increased N. P. K. Applications for Rice Plant in Reclaimed Salty Areas (간척지(干拓地)에서 수도(水稻) 및 기타작물(其他作物)의 내염성(耐鹽性)에 관(關)한 연구(硏究) -6. 염분간척지(鹽分干拓地)에서 수도(水稻)에 대한 N, P, K,의 증비효과에 관(關)하여)

  • Im, H.B.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.3 no.1
    • /
    • pp.35-41
    • /
    • 1970
  • The experiment was conducted at the salt concentration of 0.5% and 1% end of April, respectively, in low and high-salty and the non-salty areas of silt loam with the Nongkwang, rice variety. The factorial design with confounding blocks of 3 levels each of 10, 15 and 20 kg of N, 8, 12 and 16kg of phosphate and potash, respectively, per 10a was applied. 1. N applications increased by 1.5 and 2 times with the fixed amount of $P_2O_5$ and $K_2O$ (8kg/10a each) increased the proportion absorbed to the applications of N in both non salty and low-salty areas. It was observed that the absorption of Ca and Si was inhibited by either an increased treatment of N alone or combination with the other nutrients in the salty area. 2. In the non-salty area, an increased applications of standard amount of N, $P_2O_5$ and $K_2O$ respectively did not increased the yields. Doubling the application of $K_2O$ resulted in a decreased yield. 3. Applications of additional of 1.5 and 2 times the 10 kg of N per 10a increased the rice yields 12% and 21% respectively, in the low-salty area. An increased application of $P_2O_5$ and $K_2O$ failed to bring about an increased yield. 4. Increasing the application of N gave a significant increased in the yield of rice grain and 1.5 times of N applications were seemed profitable on the high-salty area. Although an increased applications $P_2O_5$ and $K_2O$ seemed to increase the yields of grain, no significant increase was observed. 5. An increased application of N increased the number of panicles up to 1.5 times the standard amount in the non-salty area, but no further increase resulted by doubling the application. The number of panicles was increased in proportion to the increased application of N in both low and high-salty areas. An increased application of $P_2O_5$ increase the number of panicles per unit area in each experimental plot while that of $K_2O$ had no effect but rather decreased the number. 6. The effect of an increased application of N decreased the weight of panicle in the non-salty area, but when the application was increased to 1.5 times or more an increased weight of panicle resulted in both salty areas. Doubling the application had approximately the same effect as 1.5 times the application. Increasing the applications of $P_2O_5$ and $K_2O$ had no effect on the panicle weight in the experimental plots. Increasing the applications of N, $P_2O_5$ and $K_2O$ did not effect the weight of 1,000 grains produced in the non-salty and salty areas. Increasing the application of N decreased the number of grains per panicle in the non-salty area but increased the number of grains per panicle in either salty areas. 7. The ratio of matured grains was highest in the low-salty area and the lowest in the high-salty area. An increased N applications decreased the ratio of matured grains in the non-salty area. No effect was observed in both low and high-salty areas. Increased the $P_2O_5$ and $K_2O$ application showed no effect on the ratio of matured grains in the experimental plots. 8. Increased applications of N, $P_2O_5$ and $K_2O$ was observed not to change the percentage of milling recovery in any experimental plots. Broken rice was increased equally by an increased application of N in the non-salty and salty areas but more remarkably so in the former. 9. Increased applications of N increased the straw production equally in the non-salty, low and high-salty areas. However, no increased production was observed from heavier applications of $P_2O_5$ and $K_2O$. Additional N applications reduced the rate of rough grain weight v.s. straw weight in the non-salty area but increased the ratios in both low and high-salty areas. Additional $P_2O_5$ and $K_2O$ had no effect with the ratio.

  • PDF