• Title/Summary/Keyword: milling by-product

Search Result 91, Processing Time 0.028 seconds

A Study on the Applicability of CNT/Aluminum Nanocomposites to Automotive Parts (CNT강화 알루미늄 나노복합재의 자동차용 부품 적용성 연구)

  • Min, Byung Ho;Nam, Dong Hoon;Park, Hoon Mo;Lee, Kyung Moon;Lee, Jong Kook
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.226-231
    • /
    • 2015
  • Various characteristics(thermal expansion, microstructure, etc.) and mechanical properties of CNT-aluminum nano composites manufactured by volume production system were evaluated. Also, formability and durability were evaluated for potential applications in automotive parts, via compared with high-elasticity material (A390) and the current commercial product. As a result, this composite has excellent mechanical properties and formability, therefore, to verity its potential for application as light and high strength materials in automobile part.

Characteristics of Jochung by Wet-Milled Rice Flour and Steamed Rice (습식 미분과 증미로 제조한 쌀조청의 특성)

  • Lee, Jung-Eun;Choi, Yoon-Hee;Cho, Mun-Gyeong;Park, Shin-Young;Kim, Eun-Mi
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.637-643
    • /
    • 2012
  • This study was performed to increase the utilization of rice and improve the productivity of jochung, traditional food in Korea. Two kinds of jochung products were prepared from steamed rice(SR) and wet-milled rice flour(WRF) by rice cultivated from 2006 to 2010. It is common to add a liquefying enzyme for rice liquefaction(4 $m{\ell}$/1,000 g rice, at $90{\sim}95^{\circ}C$, 3 h) and saccharogenic enzyme with malt(45 g/1,000 g rice, at $55{\sim}57^{\circ}C$, 6 h). In order to evaluate the quality characteristics of jochung, producing rate, pH, solidity, reducing sugar, dextrose equivalence(D.E.), viscosity, total phenolic compound, color value and sensory evaluation were carried out. In terms of the producing rate of jochung, WRF jochung was produced about 7.4% much more than SR jochung. There was no difference in producing rate between the jochung cultivated from 2006 to 2010 rice. The pH varied from 4.86~5.66, solidity was 79.48~82.28%. Color L value was 25.82~27.92, a value of 1.28~2.81, b value were 2.98~4.33. The results of sensory evaluation for jochung, as a whole, received higher score than for the commercial product(Daesang Co., Ltd, Seoul, Korea), overall acceptability score was the highest in the 2008SR. Reducing sugar, dextrose equivalence(D.E.) and total phenolic compounds were determined to be higher WRF jochung than SR jochung, while viscosity was lower WRF jochung than SR jochung. These results are thought to be due to increased surface area of rice by milling. SR jochung manufacturd by wet-milled rice flour will increase the producing rate for jochung, thereby saving manufacturing time and costs.

Characteristics of Double-junction of High-$\textrm{T}_{c}$ Superconducting $\textrm{YBa}_{2}\textrm{Cu}_{3}\textrm{O}_{7-x}$ Step-edge Junctions (고온 초전도 $\textrm{YBa}_{2}\textrm{Cu}_{3}\textrm{O}_{7-x}$ 계단형 모서리 접합의 이중접합 특성)

  • Hwang, Jun-Sik;Seong, Geon-Yong;Gang, Gwang-Yong;Yun, Sun-Gil;Lee, Gwang-Ryeol
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.86-91
    • /
    • 1999
  • We have fabricated high-$\textrm{T}_c$ superconducting $\textrm{YBa}_{2}\textrm{Cu}_{3}\textrm{O}_{7-x}$(YBCO) grain boundary junctions at a step-edge on (001) $\textrm{SrTiO}_3$(STO) substrates. A diamond-like carbon (DLC) film grown by plasma enhanced chemical vapor deposition were used as an ion milling mask to make steps on the STO (100) single crystal and was removed by an oxygen reactive ion etch process. The c-axis oriented YBCO and TO thin films were deposited epitaxially on the STO substrate with a step-edge by pulsed laser deposition. The grain boundary junctions were formed at the top and the bottom of the step. The junctions worked at temperatures above 77 K, and had I\ulcornerR\ulcorner products of 7.5mV at 16K and 0.3 mV at 77K, respectively. The I-V characteristics of these junctions showed the shape of the two noisy resistively shunted junction model.

  • PDF

Isolation and identification of a tricin 4"-O-(threo-β-guaiacylglyceryl) ether producing microorganism from germinated rice (발아 벼로부터 tricin 4"-O-(threo-β-guaiacylglyceryl) ether 생성균주의 분리 및 동정)

  • Yoon, Nara;Jang, Gwi Yeong;Lee, Yoon Jeong;Li, Meishan;Kim, Min Young;Kim, Hyun Young;Lee, Junsoo;Jeong, Heon Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.361-365
    • /
    • 2016
  • This study was conducted to isolate and identify a microorganism that increases tricin-O-(threo-${\beta}$-guaiacylglyceryl) ether (TTGE) content in the hulls of rice (Oryza sativa L.). Bacteria from germinated rice were isolated by enrichment cultivation using yeast mold, luria bertani, potato dextrose and mannitol egg york polymyxin broths. The highest increase in TTGE content ($339.30{\mu}g/g$) was achieved by a microorganism isolated by PDA enrichment cultivation. On the basis of 16S RNA sequence homology and phylogenetic analysis, the isolated bacterium was identified to have 100% similarity with Burkholderia vietnamiensis. The isolated bacteria were short rods, negative for the Gram stain, and positive for the catalase test. The highest TTGE level was $435.86{\mu}g/g$ in 72-h fermented samples, representing a 2.5x increase compared with the control ($175.65{\mu}g/g$). In conclusion, the bacterium isolated from germinated rice extract was Burkholderia vietnamiensis, and the optimum fermentation period to maximize TTGE levels was 72 h. These findings might help in developing functional materials using rice hulls, a waste product of rice milling.

Characterization of a Corn Fiber Protein Film Containing Green Tea Extract (녹차 추출물을 함유한 옥피 단백질 필름의 특성)

  • Yang, Hyun-Ju;Lee, Ji-Hyun;Lee, Ji-Hyeon;Song, Kyung Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.2
    • /
    • pp.145-151
    • /
    • 2015
  • Corn fiber protein (CFP) was extracted from corn wet-milling by-product, corn fiber. CFP films containing various plasticizers and cross-linking agents were prepared and their mechanical properties were determined. Among the plasticizers and cross-linking agents used in this study, the CFP film containing 2 g fructose and 0.03% cinnamaldehyde had the most appropriate physical property. In addition, the CFP films containing green tea extract (GTE) were prepared by incorporating different amounts (0, 0.5, 1.0, 1.5%) of GTE into the film-forming solution. Tensile strength, film solubility, and opacity of the CFP films increased with the addition of GTE, whereas elongation and water vapor permeability of the CFP/GTE films decreased compared to those of the control. The antioxidant activity of the CFP/GTE film was determined in terms of 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity. As a result, antioxidant activity of the films increased with increasing GTE concentration. Furthermore, antimicrobial activity against Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus increased with increasing GTE concentration. These results indicate that the incorporation of GTE could enhance antioxidant and antimicrobial activities of the CFP films.

Annealing of Co-Cr dental alloy: effects on nanostructure and Rockwell hardness

  • Ayyildiz, Simel;Soylu, Elif Hilal;ide, Semra;Kilic, Selim;Sipahi, Cumhur;Piskin, Bulent;Gokce, Hasan Suat
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.471-478
    • /
    • 2013
  • PURPOSE. The aim of the study was to evaluate the effect of annealing on the nanostructure and hardness of Co-Cr metal ceramic samples that were fabricated with a direct metal laser sintering (DMLS) technique. MATERIALS AND METHODS. Five groups of Co-Cr dental alloy samples were manufactured in a rectangular form measuring $4{\times}2{\times}2$ mm. Samples fabricated by a conventional casting technique (Group I) and prefabricated milling blanks (Group II) were examined as conventional technique groups. The DMLS samples were randomly divided into three groups as not annealed (Group III), annealed in argon atmosphere (Group IV), or annealed in oxygen atmosphere (Group V). The nanostructure was examined with the small-angle X-ray scattering method. The Rockwell hardness test was used to measure the hardness changes in each group, and the means and standard deviations were statistically analyzed by one-way ANOVA for comparison of continuous variables and Tukey's HSD test was used for post hoc analysis. P values of <.05 were accepted as statistically significant. RESULTS. The general nanostructures of the samples were composed of small spherical entities stacked atop one another in dendritic form. All groups also displayed different hardness values depending on the manufacturing technique. The annealing procedure and environment directly affected both the nanostructure and hardness of the Co-Cr alloy. Group III exhibited a non-homogeneous structure and increased hardness ($48.16{\pm}3.02$ HRC) because the annealing process was incomplete and the inner stress was not relieved. Annealing in argon atmosphere of Group IV not only relieved the inner stresses but also decreased the hardness ($27.40{\pm}3.98$ HRC). The results of fitting function presented that Group IV was the most homogeneous product as the minimum bilayer thickness was measured (7.11 ${\AA}$). CONCLUSION. After the manufacturing with DMLS technique, annealing in argon atmosphere is an essential process for Co-Cr metal ceramic substructures. The dentists should be familiar with the materials that are used in clinic for prosthodontics treatments.

Optimal Conditions for Anthocyanin Extraction from Black Rice Bran and Storage Stability of Anthocyanin Extract (흑미 미강으로부터 안토시아닌의 최적 추출 조건 및 안토시아닌 추출 분말의 저장 안정성)

  • Kim, Hyo Ju;Wee, Ji-Hyang;Yang, Eun Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.10
    • /
    • pp.1543-1549
    • /
    • 2015
  • Black rice bran, a by-product from rice milling process, is a good natural source of anthocyanin pigment. The purpose of this study was to determine the optimum conditions for anthocyanin extraction from black rice bran as well as the stability of anthocyanin extract according to different storage temperatures. The main anthocyanin in 'Heugkwang' rice bran was identified as cyanidine-3-glucoside (C3G) by HPLC and LC-MS/MS. The yield and C3G content of black rice bran extract were investigated with various extraction solvents, temperatures, and times. The results indicate that the optimum extraction solvent, temperature, and time were 50% ethanol, $70^{\circ}C$, and 2 h, respectively. The stability of anthocyanin extract was studied during a storage period of 168 days at various temperatures ($-20^{\circ}C$, $4^{\circ}C$, and room temperature). Hunter's values (L, a, and b) of anthocyanin extract increased, whereas C3G content continuously decreased up to 168 days. Variations in Hunter's values and C3G content become larger as storage temperature increased. Anthocyanin extract from black rice bran was very stable, as C3G content after storage at all temperatures was maintained at more than 90% of initial content. These results suggest that anthocyanin extract from black rice bran may be useful as a natural food colorant.

Effect of Grinding Method and Grinding Rate on the Dry Beneficiation of Kaolin Mineral (분쇄방식 및 분쇄율이 고령토 광물의 건식 정제에 미치는 영향)

  • Kim, Sang-Bae;Choi, Young-Yoon;Cho, Sung-Baek;Kim, Wan-Tae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-138
    • /
    • 2008
  • The characteristics of beneficiating kaolin mineral by liberation (selective grinding) and air classification have been investigated, comparing the grinding rates of ball mill and impact mill. The ore was ground using a ball mill and a impact mill to evaluate the grindability of the two grinding methods based on the constant production amount of fine particles in size less than 325 mesh. Then, the fine product was further separated into two fractions using an air-classifier and each fraction was chemically analyzed to compare the beneficiation efficiency of the two grinding methods. The chemical grade of kaolin mineral decreased as increasing the grinding rate of both the mills. particularly in the case of ball mill because of overgrinding impurities such as quartz and feldspar. In the case of the ball milling, the fine fraction less than 325 mesh was air-classified at a cutting point of $43\;{\mu}m$. The production rate of the air-classified concentrate was found to be 66.2 wt%, removing 5.3% of $Fe_2O_3$ and 34.6% of CaO. Under the same conditions mentioned above with the impact mill, the production rate of the air-classified concentrate was 64.4 wt%, removing 34.2% of $Fe_2O_3$, 67.6% of CaO and 25.0% of $TiO_2$. Therefore, our results indicate that impact mill is superior to ball mill in terms of impurity removal.

A STUDY OF CORE TYPE AND LUTING CEMENTS ON COMPLETE CAST CROWN RETENTION (코어 형태와 시멘트 종류에 따른 전부주조금관의 유지력에 관한 연구)

  • Paek, Sang-Hyun;Chang, Ik-Tae;Lee, Sun-Hyung;Yang, Jae-Ho;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.169-177
    • /
    • 2000
  • The purpose of this study was to compare the retention of complete cast crown over amalgam ores, composite resin cores, and cast gold cores when cemented with three different luting agents. Eighteen core specimens each of amalgam(Bestaloy, Dong Myung, Seoul, Korea), composite resin (Z100, 3M Dental product, st. Paul, Minn) and type IV gold alloy (Ba-4, Heesung Engelhard Corp., Korea) were made in a customized milling stainless steel die. A wax pattern with a loop attached to occlusal surface was made for each core and a type II gold alloy casting was fabricated. The castings which had clinically acceptable marginal fit were used as test samples. The following luting cements were used to cement cast crowns on each core material : (1) zinc phosphate cement (Confi-dental Products Co., USA) (2) glass-ionomer cement (Fuji Plus, GC Industrial Corp., Tokyo, Japan) (3) resin cement (Panavia 21, Kuraray Co., USA). All cements were mixed according to manufacturers' instructions. A static load of 5kg was then applied for 10 minutes on the crowns. All specimens were stored in saline solution for 24 hours at $37^{\circ}C$ and thermocycled for 500 cycles. After storage and cycling, the tensile bond strengths were measured by using a universal testing machine (Instron Corp., Canton, Mass.) at a crosshead speed of 0.5mm/min. The results were as follows 1. The retentive strength of resin cement was the highest of alt three types of cement for resin core (p<0.05). 2. There was no statistical difference among the retentive strengths of three cements for amalgam core (p>0.05). 3. The retentive strength of resin cement was higher than that of zinc phosphate for cast core, but there was no difference between the retentive strength of glass ionomer cement and those of rein and zinc phosphate cement. 4. The retentive strength of the zinc phosphate cement for amalgam core was the highest of all type of cores.

  • PDF

Quality Characteristics of Wheat Flours from New Released Iksan370 with Long Spike and Domestic Wheat Cultivars (신육성 다수확 밀 익산370호의 원맥과 밀가루의 품질 특성)

  • Choi, Yong-Seok;Lee, Jae-Kang;Choi, Yong-Hyun;Kim, Young-Hwan;Kang, Chon-Sik;Shin, Malsik
    • Korean journal of food and cookery science
    • /
    • v.31 no.5
    • /
    • pp.551-556
    • /
    • 2015
  • Iksan370 is a long-spike wheat developed by the Rural Development Administration yielding excellent features components such as cold resistance, disease resistance, and viviparous germination. The physicochemical and material properties of the raw wheat and milled flour of Iksan370 were analyzed to derive its appropriate uses. The raw wheat of Iksan370 showed high contents of ash and proteins at 1.71% and 13.7%, respectively. Its test weight of 763.0 g/L was similar to those of other varieties and its 1,000 kernel weight was high at 45.38 g. The milled flour of Iksan370 had an ash content of 0.45%, which corresponds with a class 1 flour, and its protein content is 12.18%, corresponding with strong flour. The damaged starch was 5.41%, which was lower than that of other varieties. The average grain size was $70.67{\mu}m$ and the grain distribution was at the level of a typical hard wheat. In the farinogram, the water absorption was 58.63%, which corresponded to the level of medium flour. The development time was 7.00 minutes, which was significantly lower than those of Jokyung and Keumkang. The degree of softening was 67.00 BU, similar to those of Yunbaek and Baekjoong. Among the physico-chemical characteristics, the high protein content and typical hard wheat grain distribution of Iksan370 were similar to those of strong wheat, usually used for bread making. However, in the farinogram, the dough development time was short and the degree of softening was high. As a result, Iksan370 was expected to have poor breadmaking properties and a small volume of the final bread product due to insufficient dough durability. On the other hand, Iksan370 showed the highest maximum gelatinization viscosity at 864.00 BU. Therefore, Iksan370 is expected to show glutinous texture when used for noodles and its flour appears to be appropriate for frying powders as well.