• Title/Summary/Keyword: millimeter wave system

Search Result 225, Processing Time 0.037 seconds

Measurement of Rainfall Characteristics and Rain-Attenuation at 38 GHz in Worst Months Affected by El Nino Signal in 1998

  • Jang Won-Gyu;Choi Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.4
    • /
    • pp.189-192
    • /
    • 2005
  • The measurement of unique rainfall phenomenon and rain attenuation on 38 GHz terrestrial links at South Korea in 1998 is presented. It was one of the most severe rainfall years at the measured region due to increased EI Nino signal. The rainfall rate exceeded at $0.01\%$ was 97.4 mm/h during a worst month and annual rate was 63.5 mm/h. Experimentally measured results have been compared with some models and found that the rain attenuation by system level was underestimated by the existing prediction models. As it was measured only three months, further study and measurement of rainfall and rain attenuation in this region are needed for stable millimeter-wave system operation at all times.

A study on the train radio system of millimeter wave method (밀리미터파방식의 열차무선시스템에 관한 고찰)

  • 조봉관
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.465-470
    • /
    • 2002
  • Construction of Yamanashi Maglev Test Line in Japan was proceeded based on "superconducting maglev Yamanshi Testline plan" approved by Ministry of Transport Government of Japan in 1990, which was performed by Yamanashi Maglev Test Line construction project team organized by personnel of Japan Railway Construction Public Corporation, RTRI and Central Japan Railway Company, and overall adjustment test was performed. Yamanashi Maglev experimental project team was organized, sponsored by RTRI and Central Japan Railway Company from April in 1997. Running test for the application was performed by this project team. Technical availability was proved by "superconducting maglev committee" of Ministry of Transport Government in March, 2000. In this paper, train radio system by LCX and by millimeter wave will be reviewed.

  • PDF

Real-time passive millimeter wave image segmentation for concealed object detection (은닉 물체 검출을 위한 실시간 수동형 밀리미터파 영상 분할)

  • Lee, Dong-Su;Yeom, Seok-Won;Lee, Mun-Kyo;Jung, Sang-Won;Chang, Yu-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2C
    • /
    • pp.181-187
    • /
    • 2012
  • Millimeter wave (MMW) readily penetrates fabrics, thus it can be used to detect objects concealed under clothing. A passive MMW imaging system can operate as a stand-off type sensor that scans people in both indoors and outdoors. However, because of the diffraction limit and low signal level, the imaging system often suffers from low image quality. Therefore, suitable statistical analysis and computational processing would be required for automatic analysis of the images. In this paper, a real-time concealed object detection is addressed by means of the multi-level segmentation. The histogram of the image is modeled with a Gaussian mixture distribution, and hidden object areas are segmented by a multi-level scheme involving $k$-means, the expectation-maximization algorithm, and a decision rule. The complete algorithm has been implemented in C++ environments on a standard computer for a real-time process. Experimental and simulation results confirm that the implemented system can achieve the real-time detection of concealed objects.

Photonic Mixing Based Microcellular System Operating in Millimeter-wave Band (광믹싱을 사용한 밀리미터파 마이크로 셀룰라 시스템)

  • Kim, Yeon-Kyu;Park, Hung-Su;Yang, Hoon-Gee
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.8
    • /
    • pp.54-61
    • /
    • 1999
  • This paper proposes a new optic link structure applicable to broad-band wireless access microcellularsystem servicing in the millimeter wave frequency band. The proposed structure utilizes photonic mixing by exploiting the nonlinear property of EOMs, which leads to the frequency up-conversion at the CS and thus, electrical mixing at a BS is not required. Moreover, via transmitting an additional optical millimeter wave carrier into the Bs, the dispenses with an active optic source, which miniaturizes the BS. We analyze CNR, IM3/C in the downlink and SFDR in the uplink. Through simulation using the typical parameter values we also show the feasibility of the proposed system based on the requirements in the current microcellular system.

  • PDF

Ultra High-Gain Displaced-Axis Metal Reflectarray Antenna for Millimeter-Wave Region (밀리미터파 대역의 초고이득 축이동 금속배열안테나)

  • Yi, Minwoo;Yang, Jongwon;Lee, Woosang;Jang, Won;So, Joonho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.342-349
    • /
    • 2016
  • We design a displaced-axis Gregorian dual antenna in the form of a metal reflectarray antenna for millimeter wave region, W-band. Unlike a reflectarray composed of printed patch antennas on a dielectric substrate, metallic rectangular waveguide unit-cells are proposed to avoid the loss of substrate and take an advantage of ease of typical metal machining fabrication. In this paper, the radiation characteristics of constructed metal reflectarray antennas show ultra high-gain antenna over 50 dBi at a target frequency in W-band. The experimental measurements are conducted in millimeter-wave compact range antenna measurement system.

Uplink Pilot Signal Design for Mobile Wireless Backhaul (이동무선백홀을 위한 상향링크 파일럿 신호 설계)

  • Choi, Seung Nam;Kim, Ilgyu;Kim, Dae Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1005-1013
    • /
    • 2015
  • In this paper, an uplink pilot signal structure is proposed for millimeter wave(mmWave)-based mobile wireless backhaul. For the transmit diversity of two antenna ports, uplink pilot signals generated from the Zadoff-Chu sequence can be mapped in an interleaved mode or continuous mode on the frequency axis, and channel estimation algorithms are different depending on the pilot signal mapping schemes. Through a simulation under Rayleigh fading channel assuming a subway scenario, the interleaved mapping scheme showed no performance degradation compared to the continuous mapping scheme and the implementation complexity of the uplink channel estimator was reduced due to the interleaved mapping scheme.

Design of a 170 GHz Notch Filter for the KSTAR ECE Imaging Sensor Application

  • Mohyuddin, Wahab;Woo, Dong Sik;Kim, Sung Kyun;Kim, Kang Wook;Choi, Hyun-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.8-12
    • /
    • 2016
  • A planar, light-weight, and low-cost notch filter structure is required for the KSTAR ECEI (Electron Cyclotron Emission Imaging) system to protect the mixer arrays from spurious plasma heating power. Without protection, this heating power can significantly degrade or damage the performance of the mixer array. To protect mixer arrays, a frequency selective surface (FSS) structure is the suitable choice as a notch filter to reject the spurious heating power. The FSS notch filter should be located between the lenses of the ECEI system. This paper presents a 170 GHz FSS notch filter for the KSTAR ECEI sensor application. The design of such an FSS notch filter is based on the single-sided square loop geometry, because that makes it relatively insensitive to the incident angle of incoming wave. The FSS notch filter exhibits high notch rejection with low pass-band insertion loss over a wide range of incident angles. This paper also reviews the simulated and measured results. The proposed FSS notch filter might be implemented in other millimeter-wave plasma devices.

Implementation of mmWave long-range backhaul for UAV-BS

  • Jangwon Moon;Junwoo Kim;Hoon Lee;Youngjin Moon;Yongsu Lee;Youngjo Bang;Kyungyeol Sohn;Jungsook Bae;Kwangseon Kim;Seungjae Bahng;Heesoo Lee
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.781-794
    • /
    • 2023
  • Uncrewed aerial vehicles (UAVs) have become a vital element in nonterrestrial networks, especially with respect to 5G communication systems and beyond. The use of UAVs in support of 4G/5G base station (uncrewed aerial vehicle base station [UAV-BS]) has proven to be a practical solution for extending cellular network services to areas where conventional infrastructures are unavailable. In this study, we introduce a UAV-BS system that utilizes a high-capacity wireless backhaul operating in millimeter-wave frequency bands. This system can achieve a maximum throughput of 1.3 Gbps while delivering data at a rate of 300 Mbps, even at distances of 10 km. We also present the details of our testbed implementation alongside the performance results obtained from field tests.

A Novel Frequency-octupling Millimeter Wave ROF Without Bit Walk-off Effect Based on MZM and an Insertion Pilot Signal

  • Bin Li;Xu Chen;Siyuan Dai;Xinqiao Chen
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.345-354
    • /
    • 2024
  • The bit walk-off effect caused by fiber dispersion and carrier reuse in the base station (BS) are two key problems in radio-over-fiber (ROF) systems. In this paper, a novel frequency-octupling ROF system based on the Mach-Zehnder modulator (MZM) is proposed, which can overcome the bit walk-off effect and realize carrier reuse by inserting pilot signals. Theoretical analysis and simulation verification of the system are carried out. Under the condition of a Q factor greater than 6, the optical fiber transmission distance of the upper and lower links is more than 290 km and 80 km, respectively. The influence of the main device parameters of the system on the Q factor is analyzed when they deviate from their designed values. The system designed in this paper can not only effectively overcome the bit walk-off effect, but also solve the problem of downlink performance degradation and the limitation of tunability caused by conventional carrier reuse in ROF. The system can greatly increase the transmission distance and improve the performance of the system and has an important application prospect in ROF.

Design of Dual Curved Lens for Millimeter-Wave Imaging (밀리미터파 이미징을 위한 이중 곡률 렌즈의 설계)

  • Lee, Won-Hui;Pyo, Seongmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.239-242
    • /
    • 2016
  • In this paper, we proposed the dual curved lens of concave type. HDPE (High Density Polyethylene) used to fabricate the dual curved lens. The dual curved lens consisted of two concave structures. Role of two concave structures is to beam uniform and expansion. A small concave structure has the greater curvature than big concave structure. The dual curved lens will apply to millimeter imaging system. We measured the dual curved lens performance using 250 GHz VDI source. And we simulated the dual curved lens using ZEMAX. Fabricated lens have a good performance for beam uniform and expansion.