• Title/Summary/Keyword: milk urea nitrogen

Search Result 128, Processing Time 0.028 seconds

Effect of LED Lighting Time on Productivity, Blood Parameters and Immune Responses of Dairy Cows (LED 점등시간이 젖소의 생산성, 혈액 매개변수 및 면역 반응에 미치는 영향)

  • Park, Jin-Ryong;Yoon, Nam-Jin;Belal, Shah-Ahmed;Shim, Kwan-Seob
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.3
    • /
    • pp.515-532
    • /
    • 2018
  • Light is an essential and powerful element to animals. A light-emitting diode (LED) is most efficient in terms of economic benefits. The aim of the present study was to evaluate the effects of LED lighting time on milk production, milk composition, and the immune response of Holstein cows. Forty lactating cows were assigned to four experimental groups: control; natural daylight, treatment; am3-6, pm6-12 and pm6-am6. We found that there was no significant effect on the decrease ratio in milk production among the groups. Milk urea nitrogen (MUN) was significantly decreased in pm6-am6 and pm6-12 than the control. With regard to the hemolytic biochemical analysis, GLU was significantly increased and CRE, T-BIL were significantly decreased in the pm6-12 than the control. IGF-1 levels were significantly increased in pm6-12 compared to other groups. Besides, cortisol was significantly lowered in the pm6-12 than the control, while prolactin, IgA and IgG were not significant among the groups. In addition, catalase and glutathione peroxidase were also significantly increased in pm6-12 than the control. However, antioxidant enzyme activity and superoxide dismutase were not significant among the experimental groups. Therefore, it was concluded that LED lighting time had some impact on blood parameters and immune responses in dairy cows without any changes in milk production.

Replacing alfalfa hay with amaranth hay: effects on production performance, rumen fermentation, nutrient digestibility and antioxidant ability in dairy cow

  • Jian Ma;Xue Fan;Guoqing Sun;Fuquan Yin;Guangxian Zhou;Zhihui Zhao;Shangquan Gan
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.218-227
    • /
    • 2024
  • Objective: The aim of this research was to explore the effects of dietary substitution of alfalfa hay by amaranth hay on production performance, rumen fermentation, nutrient digestibility, serum biochemical parameters and antioxidant ability in dairy cows. Methods: A total of 45 healthy Holstein cows with same parity and similar milk yield and body weight were randomly divided into 3 groups: control diet without amaranth hay (CON) or 50% and 100% alfalfa hay replaced by an equal amount of amaranth hay (dry matter basis, AH1 and AH2, respectively). All the cows were fed regularly 3 times a day at 06:30, 14:30, and 22:30 and had free access to water. The experiment lasted for 60 d. Results: The dry matter intake of CON and AH1 groups was higher (p<0.05) than that of AH2 group. Compared with AH1 group, the milk yield of AH2 group was reduced (p<0.05). Moreover, dietary substitution of alfalfa hay by amaranth hay increased (p<0.05) milk fat, ammonia nitrogen and acetate concentrations. However, the crude protein digestibility of AH2 group was lower (p<0.05) than that of CON group, while an opposite tendency of serum urea nitrogen was found between two groups. The neutral detergent fiber digestibility of AH1 group was increased (p<0.05) when compared to AH2 group. Amaranth hay treatment increased (p<0.05) the serum concentration of glutathione peroxidase in dairy cows. Compared with CON group, the malonaldehyde activity of AH1 group was decreased (p<0.05). Conclusion: Dietary replacing alfalfa hay with amaranth hay (50% ratio) in dairy cows did not affect production performance but improved their antioxidant ability.

Responses of Dairy Cows to Supplemental Highly Digestible Rumen Undegradable Protein and Rumen-protected Forms of Methionine

  • Sun, T.;Yu, X.;Li, S.L.;Dong, Y.X.;Zhang, H.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.659-666
    • /
    • 2009
  • Metabolizable protein (MP) supply and amino acid balance in the intestine were manipulated through selection of highly digestible rumen-undegradable protein (RUP) sources and protected methionine (Met) supplementation. Four ruminallycannulated, multiparous Holstein cows averaging 193${\pm}$13 days in milk were used in a 4${\times}$4 Latin square design to assess N utilization and milk production responses to changes in RUP level, post-ruminal RUP digestibility and protected Met supplementation. Treatments were A) 14.0% crude protein (CP), 8.0% rumen degradable protein (RDP) and 6.0% RUP of low intestinal digestibility (HiRUP-LoDRUP); B) 14.1% CP, 8.1% RDP and 6.0% RUP of high intestinal digestibility (HiRUP-HiDRUP); C) 13.1% CP, 7.9% RDP and 5.2% RUP of high intestinal digestibility (LoRUP-HiDRUP), and D) 13.1% CP, 7.9% RDP and 5.2% RUP of high intestinal digestibility plus rumen escape sources of Met (LoRUP-HiDRUP+Met). Experimental diets were formulated to have similar concentrations of RDP, net energy of lactation ($NE_L$), neutral detergent fiber (NDF), acid detergent fiber (ADF), calcium, phosphorus and ether extract using the NRC model (2001). Results showed that dry matter intake (DMI), production of milk fat and protein were similar among treatments. Milk production was similar for diet HiRUP-LoDRUP, HiRUP-HiDRUP and LoRUP-HiDRUP+Met, and significantly higher than diet LoRUP-HiDRUP. Milk fat and protein percentage were higher for cows receiving HiDRUP treatments, with the greatest increases in the diet LoRUP-HiDRUP+Met. There was no significant change in ruminal pH, $NH_3g-N$ and volatile fatty acid (VFA) concentration among all treatments. Apparent digestibility of dry matter (DM), CP, NDF and ADF and estimated bacterial CP synthesis were similar for all treatments. Nitrogen intakes, blood and milk urea-N concentrations were significantly higher for cows receiving HiRUP diets. Urine volume and total urinary N excretion were significantly lowered by LoRUP diets. Lowering dietary RUP level while supplementing the highly digestible RUP source with rumen escape sources of Met resulted in similar milk production, maximal milk fat and protein concentration and maximum N efficiency, indicating that post-ruminal digestibility of RUP and amino acid balance in the small intestine can be more important than total RUP supplementation.

A comparative study on milk composition of Jersey and Holstein dairy cows during the early lactation

  • Lim, Dong-Hyun;Mayakrishnan, Vijayakumar;Lee, Hyun-Jeong;Ki, Kwang-Seok;Kim, Tae-Il;Kim, Younghoon
    • Journal of Animal Science and Technology
    • /
    • v.62 no.4
    • /
    • pp.565-576
    • /
    • 2020
  • Recently, Jersey cattle was introduced and produced by embryo transfer to Korea. This study was conducted to investigate the differences of milk compositions between Jersey and Holstein cows and the relationship between days in milk (DIM) and milk compositions during early lactation. Data were collected from twelve lactating cows from Department of Animal Resources Development at National Institute of Animal Science. Cows in parity 1 were used, and calved at spring from April to March of 2017. All cows were housed in two sections within a free-stall barn, which divided into six from each breed, and received a basal total mixed ration. Milk samples of each cow were collected at 3 DIM and 30 DIM for analyzing the milk compositions, including fatty acids (FA), amino acids and minerals. Total solids, citrate, and milk urea nitrogen level were differed between the breeds (p < 0.05). As DIM went from 3 to 30, milk protein, total solids, and somatic cell count decreased (p < 0.05), but lactose increased in all breed milk (p < 0.05). Citrate and free fatty acid (FFA) elevated in Jersey milk (p < 0.05), whereas reduced in Holstein milk (p < 0.05). Proportions of some individual FA varied from the breeds. Myristic (C14:0), palmitic (C16:0), and arachidonic acid (C20:4) in milk from all cows were higher at 3 DIM than at 30 DIM (p < 0.05). Also, stearic (C18:0) and oleic acid (C18:1) were lower at 3 DIM than at 30 DIM (p < 0.05), and the C18:1 to C18:0 ratio was significantly differed in DIM × breed interactions (p < 0.05). The contents of the individual amino acids did not differ from the breeds. Calcium, phosphorous, magnesium, and zinc (Zn) contents was significantly increased in Holstein milk than Jersey milk at 3 DIM. Also, K and Zn concentrations were higher in Holstein milk than in Jersey milk at 30 DIM (p < 0.05). It was concluded that Jersey cows would produce more effective milk in processing dairy products and more proper energy status compared with Holstein cows in early lactation under the same environmental and nutritional conditions.

Characteristics of dairy goat milk positive reaction of the alcohol precipitation test in Korea (우리나라 유산양 알코올 양성유의 특징에 관한 연구)

  • Kim, Hye-Ra;Jung, Ji-Young;Cho, In-Young;Yu, Do-Hyeon;Shin, Sung-Shik;Son, Chang-Ho;Ok, Ki-Seok;Hur, Tai-Young;Jung, Young-Hun;Choi, Chang-Yong;Suh, Guk-Hyun
    • Korean Journal of Veterinary Service
    • /
    • v.36 no.4
    • /
    • pp.255-261
    • /
    • 2013
  • The objective of the present study was to determine the minimum alcohol (ethanol) concentration that gives rise to the coagulation of goat milk for the alcohol precipitation test, and to evaluate the physical parameters of goat milk which include alcohol and heat stability. A total of 1,295 udder-half milk samples from 648 lactating dairy goats were collected from seven farms in Jeonnam province, Republic of Korea, to determine the alcohol and heat stability. The majority (99.6%) of the samples were coagulated when 70% ethanol was added to the milk, while only 11.0% of the samples were precipitated by the addition of an equal volume of 45% ethanol. With the concentration of 65%, 60%, 55% and 50% aqueous ethanol, 99.2%, 96.8%, 81.0% and 52.8% of the milk samples were coagulated, respectively. Of 1,295 dairy goat milk samples tested for heat stability, 127 (9.8%) were coagulated by boiling. Among the 143 alcohol test-positive udder-half milk samples, 52 (4.0%) were unstable by heat test, while 1,032 (79.7%) of the 1,152 alcohol test-negative milk samples were stable by heat test. According to the results of boiling test, sensitivity and specificity of 45% alcohol precipitation test were 0.3023 (95% CI: 0.2346~0.3772) and 0.9190 (95% CI: 0.9017~0.9344), respectively. The contents of protein and the specific gravity were higher in the milk samples of 45% alcohol test-positive than in those of 45% alcohol test-negative. However, lower levels of lactose and milk urea nitrogen were observed in the milk samples of 45% alcohol test-positive compared to the alcohol test-negative milk samples. The lowest pH values ($6.73{\pm}0.20$) were shown in the 45% alcohol test-negative and heat-unstable milk samples, while the lowest values of somatic cell counts and bacterial counts were shown in the 45% alcohol test-negative and heat-stable milk samples. Results of this study suggest that the alcohol precipitation for dairy goat milk may have to be tested with ethanol concentration less than 45% for the determination of freshness and heat-stability.

Effects of Dietary Protein Levels for Gestating Gilts on Reproductive Performance, Blood Metabolites and Milk Composition

  • Jang, Y.D.;Jang, S.K.;Kim, D.H.;Oh, H.K.;Kim, Y.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.83-92
    • /
    • 2014
  • This experiment was conducted to evaluate the effects of dietary CP levels in gestation under equal lysine content on reproductive performance, blood metabolites and milk composition of gilts. A total of 25 gilts ($F_1$, Yorkshire${\times}$Landrace) were allotted to 4 dietary treatments at breeding in a completely randomized design, and fed 1 of 4 experimental diets containing different CP levels (11%, 13%, 15%, or 17%) at 2.0 kg/d throughout the gestation. Body weight of gilts at 24 h postpartum tended to increase linearly (p = 0.09) as dietary CP level increased. In lactation, backfat thickness, ADFI, litter size and weaning to estrus interval (WEI) did not differ among dietary treatments. There were linear increases in litter and piglet weight at 21 d of lactation (p<0.05) and weight gain of litter (p<0.01) and piglet (p<0.05) throughout the lactation as dietary CP level increased. Plasma urea nitrogen levels of gilts in gestation and at 24 h postpartum were linearly elevated as dietary CP level increased (p<0.05). Free fatty acid (FFA) levels in plasma of gestating gilts increased as dietary CP level increased up to 15%, and then decreased with quadratic effects (15 d, p<0.01; 90 d, p<0.05), and a quadratic trend (70 d, p = 0.06). There were no differences in plasma FFA, glucose levels and milk composition in lactation. These results indicate that increasing dietary CP level under equal lysine content in gestation increases BW of gilts and litter performance but does not affect litter size and milk composition. Feeding over 13% CP diet for gestating gilts could be recommended to improve litter growth.

Effects of Dietary Supplementation of Feather Meal and It's Digest on Taurine Content of Cow Milk (우모분 및 우모분 Digest 첨가가 우유 내 Taurine 함량에 미치는 영향)

  • Bae, G.S.;Kim, H.S.;Paik, I.K.;Chang, M.B.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.397-408
    • /
    • 2005
  • This study, consisting of three experiments, was conducted to determine the effects of feeding feather meal (FM), feather meal digest (FMD), L-cystine and methionine hydroxyl analogue (MHA) on taurine content of milk and milk production of Holstein dairy cows. In experiment 1, FM or FMD was supplemented at 0, 1, 3 and 5% of dry matter intake (DMI), respectively. Taurine concentration of 3% FM and 5% FMD treatment were increased by 14% and 220/0, respectively. The 5% FM treatment had a negative effect on milk yield and FM and FMD treatments had no significant or consistent effects on milk fat, protein, lactose, milk urea nitrogen (MUN) and somatic cell count (SCC). In experiment 2, Lcystine or MHA was supplemented at 0, 1, 3, and 5g or ml/d along with 5% FMD, respectively. Milk yield decreased at 3 and 5g or ml Lcystine or MHA supplementation along with 5% FMD. Fat and lactose in milk were not significantly affected by treatments. However, milk protein level increased significantly in the 5 ml HMA with 5% FMD treatment. SCC decreased significantly in 1ml MHA with 5% FMD supplemented treatment but increased in 5g Lcystine with 5% FMD and 5 ml MHA with 5% FMD treatments. Increase of milk taurine concentration of L'cystine with 5% FMD treatments was not significant but those of MHA with 5% FMD treatments were significantly higher than the control. The highest increase of milk taurine concentration was 65% shown in 1 ml MHA with 5% FMD treatment. In experiment 3, 5% FM, 5% FM+3% molasses or 5% FM+3% molasses+l ml MHA was supplemented to the based TMR diet. The molasses treatments (5% FM+3% molasses and 5% FM+3% molasses+l ml MHA) showed significantly higher milk taurine content than the 5% FM treatment. The molasses treatments significantly reduced MUN but increased SCC. It was concluded that FMD is more effective than FM in enriching taurine in milk. Maximum taurine enrichment (65%) in the milk was obtained by supplementation of 5% FMD/DM1+1 ml MHA/d/cow. Molasses supplementation to 5% FM diet increased milk taurine content. However, MHA supplementation in dairy cows increased ruminal escape, gastrointestinal absorption and response of serum methionine.

Seasonal variation of goat milk composition and somatic cell count in Jeonnam province (전남지방 산양유의 성분 및 체세포수의 계절적 변화)

  • Kim, Hye-Ra;Jung, Ji-Young;Cho, In-Young;Yu, Do-Hyeon;Shin, Sung-Shik;Son, Chang-Ho;Ok, Ki-Seok;Hur, Tai-Young;Jung, Young-Hun;Choi, Chang-Yong;Suh, Guk-Hyun
    • Korean Journal of Veterinary Service
    • /
    • v.36 no.4
    • /
    • pp.263-272
    • /
    • 2013
  • Consistent information on the chemical composition and its seasonal variation of goat udder half milk is limited in Korea. The objective of this study was to analyze the seasonal variation of the chemical composition of goat milk to take establish various parameters into consideration on the pricing of the goat milk. Variations in chemical composition, somatic cell count (SCC) and bacterial count of 1,038 udder half milk samples from 650 heads raised in 7 farms of Jeonnam province were determined by season. Fat, protein, lactose, non-fat solids, milk urea nitrogen (MUN), pH, SCC and bacterial counts were also analyzed. The average composition of the milk was: fat $3.80{\pm}1.36%$, protein $3.23{\pm}0.80%$, lactose $4.39{\pm}0.54%$, total solids $12.18{\pm}1.80%$, non-fat solids $8.38{\pm}0.80%$, and milk urea nitrogen $28.44{\pm}5.00mg/dL$. The average pH was $6.81{\pm}0.24$. The average of SCC and bacterial counts were $2.54{\pm}4.60{\times}10^6cells/mL$ and $1.25{\pm}3.76{\times}10^5CFU/mL$, respectively. Chemical composition, pH, SCC and bacterial counts of dairy goat milk varied widely during the lactation period and by season. The fat concentration was the lowest in spring ($3.39{\pm}1.53%$) and the highest in autumn and winter ($3.98{\pm}1.30%$ and $3.98{\pm}1.48%$). Protein concentration was the lowest during summer ($2.92{\pm}0.48%$) and the highest in winter ($2.92{\pm}0.48%$). Lactose concentration was the lowest in autumn ($4.24{\pm}0.41%$) and the highest in spring ($4.58{\pm}0.35%$). The lowest total solid value was obtained in the spring season ($11.75{\pm}1.80%$) which was then increased in winter ($12.85{\pm}1.96%$). Non-fat solid concentration was the lowest in summer ($8.07{\pm}0.64%$) and the highest in autumn ($8.94{\pm}0.82%$). MUN concentration was the highest in summer ($8.07{\pm}0.64%$), and the pH concentration was the highest in spring at $6.93{\pm}0.27%$. Seasonal variation of SCC and bacterial count were the lowest in spring ($0.94{\pm}1.54{\times}10^6cells/mL$ and $0.22{\pm}0.61{\times}10^5CFU/mL$, respectively) and was the highest in winter ($3.95{\pm}7.14{\times}10^6cells/mL$ and $2.23{\pm}5.54{\times}10^4CFU/mL$, respectively).

Effects of different levels of dietary crude protein on the physiological response, reproductive performance, blood profiles, milk composition and odor emission in gestating sows

  • Hongjun Kim;Xinghao Jin;Cheonsoo Kim;Niru Pan;Yoo Yong Kim
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1263-1273
    • /
    • 2023
  • Objective: This study was conducted to evaluate the effects of crude protein (CP) levels on the physiological response, reproductive performance, blood profiles, milk composition and odor emission in gestating sows. Methods: Seventy-two multiparous sows (Yorkshire×Landrace) of average body weight (BW), backfat thickness, and parity were assigned to one of six treatments with 10 or 11 sows per treatment in a completely randomized design. Experimental diets with different CP levels were as follows: i) CP11, corn-soybean-based diet containing 11% CP; ii) CP12, corn-soybean-based diet containing 12% CP; iii) CP13, corn-soybean-based diet containing 13% CP; iv) CP14, corn-soybean-based diet containing 14% CP; v) CP15, corn-soybean-based diet containing 15% CP; and vi) CP16: corn-soybean-based diet containing 16% CP. Results: There was no significant difference in the performance of sow or piglet growth when sows were fed different dietary protein levels. Milk fat (linear, p = 0.05) and total solids (linear, p = 0.04) decreased as dietary CP levels increased. Increasing dietary CP levels in the gestation diet caused a significant increase in creatinine at days 35 and 110 of gestation (linear, p = 0.01; linear, p = 0.01). The total protein in sows also increased as dietary CP levels increased during the gestation period and 24 hours postpartum (linear, p = 0.01; linear, p = 0.01). During the whole experimental period, an increase in urea in sows was observed when sows were fed increasing levels of dietary CP (linear, p = 0.01), and increasing blood urea nitrogen (BUN) concentrations were observed as well. In the blood parameters of piglets, there were linear improvements in creatinine (linear, p = 0.01), total protein (linear, p = 0.01), urea (linear, p = 0.01), and BUN (linear, p = 0.01) with increasing levels of dietary CP as measured 24 hours postpartum. At two measurement points (days 35 and 110) of gestation, the odor gas concentration, including amine, ammonia, and hydrogen sulfide, increased linearly when sows fed diets with increasing levels of dietary CP (linear, p = 0.01). Moreover, as dietary CP levels increased to 16%, the odor gas concentration was increased with a quadratic response (quadratic, p = 0.01). Conclusion: Reducing dietary CP levels from 16% to 11% in a gestating diet did not exert detrimental effects on sow body condition or piglet performance. Moreover, a low protein diet (11% CP) may improve dietary protein utilization and metabolism to reduce odor gas emissions in manure and urine in gestating sows.

Effect of phytol in forage on phytanic acid content in cow's milk

  • Lv, Renlong;Elsabagh, Mabrouk;Obitsu, Taketo;Sugino, Toshihisa;Kurokawa, Yuzo
    • Animal Bioscience
    • /
    • v.34 no.10
    • /
    • pp.1616-1622
    • /
    • 2021
  • Objective: Bioactive compounds in ruminant products are related to functional compounds in their diets. Therefore, this study aimed to explore the effect of forage sources, Italian ryegrass (IR) silage vs corn silage (CS) in the total mixed ration (TMR), on milk production, milk composition, and phytanic acid content in milk, as well as on the extent of conversion of dietary phytol to milk phytanic acid. Methods: Phytanic acid content in milk was investigated for cows fed a TMR containing either IR silage or CS using 17 cows over three periods of 21 days each. In periods 1 and 3, cows were fed CS-based TMR (30% CS), while in period 2, cows were fed IR silage-based TMR (20% IR silage and10% CS). Results: The results showed that there were no differences in fat, protein, lactose, solids-not-fat, somatic cell count, and fatty acid composition of milk among the three experimental periods. There were no differences in the plasma concentration of glucose, triglycerides, total cholesterol, and nonesterified fatty acids among the three experimental periods, while the blood urea nitrogen was higher (p<0.05) in period 2. The milk phytanic acid content was higher (p<0.05) in period 2 (13.9 mg/kg) compared with periods 1 (9.30 mg/kg) and 3 (8.80 mg/kg). Also, the phytanic acid content in the feces was higher (p<0.05) in period 2 (1.65 mg/kg dry matter [DM]) compared with period 1 (1.15 mg/kg DM), and 3 (1.17 mg/kg DM). Although the phytol contents in feces did not differ among the three feeding periods, the conversion ratio from dietary phytol to milk phytanic acid was estimated to be only 2.6%. Conclusion: Phytanic acid content in cow's milk increases with increasing phytol content in diets. However, phytol might not be completely metabolized in the rumen and phytanic acid, in turn, might not be completely recovered into cow's milk. The change of phytanic acid content in milk may be positively correlated with the change of phytol in the diet within a short time.