• Title/Summary/Keyword: milk urea nitrogen

Search Result 128, Processing Time 0.025 seconds

FEEDING OF BYPASS PROTEIN TO CROSS BRED COWS IN INDIA ON STRAW BASED RATION

  • Kunju, P.J.G.;Mehta, A.K.;Garg, M.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.1
    • /
    • pp.107-112
    • /
    • 1992
  • Feeding of bypass protein to lactating animals have been suggested by many research scientists as a way to increase the nutrient supply at the intestinal level thereby enhance animal production in ruminant animals. A feeding trial with a formulated bypass protein feed on straw based ration was carried out by using lactating cross bred cows at the stage of 4th month of their lactation. Bypass protein feed was fed at 5 different levels. Urea Molasses Block was used as a nitrogen source to the rumen microflora. In order to reduce the heat increment straw intake was restricted to all the animals. Urea Molasses Block intake was noticed varying in proportion with the bypass protein feed intake. Milk production was observed increasing in accordance with the level of bypass protein feed intake. However, the maximum response was noticed in cows that were fed 3 kg bypass protein feed. The nutrient availability at this stage was below the NRC (1988) requirements. Other remarkable finding was that the cows maintained the persistency of milk production even after 3rd month of lactation when the ambient temperature was $40^{\circ}C$.

Effects of ruminally degradable starch levels on performance, nitrogen balance, and nutrient digestibility in dairy cows fed low corn-based starch diets

  • Luo, Guobin;Xu, Wenbin;Yang, Jinshan;Li, Yang;Zhang, Liyang;Wang, Yizhen;Lin, Cong;Zhang, Yonggen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.5
    • /
    • pp.653-659
    • /
    • 2017
  • Objective: This trial was performed to examine the effects of ruminally degradable starch (RDS) levels in total mixed ration (TMR) with low corn-based starch on the milk production, whole-tract nutrient digestibility and nitrogen balance in dairy cows. Methods: Eight multiparous Holstein cows (body weight [BW]: $717{\pm}63kg$; days in milk [DIM]: $169{\pm}29$) were assigned to a crossover design with two dietary treatments: a diet containing 62.3% ruminally degradable starch (% of total starch, low RDS) or 72.1% ruminally degradable starch (% of total starch, high RDS). Changes to the ruminally degradable levels were conducted by using either finely ground corn or steam-flaked corn as the starch component. Results: The results showed that dry matter intake, milk yield and composition in dairy cows were not affected by dietary treatments. The concentration of milk urea nitrogen was lower for cows fed high RDS TMR than low RDS TMR. The whole-tract apparent digestibility of neutral detergent fiber, acid detergent fiber and crude protein decreased, and that of starch increased for cows fed high RDS TMR over those fed low RDS TMR, with no dietary effect on the whole-tract apparent digestibility of dry matter and organic matter. The proportion of urinary N excretion in N intake was lower and that of fecal N excretion in N intake was higher for cows fed high RDS TMR than those fed low RDS TMR. The N secretion in milk and the retention of N were not influenced by the dietary treatments. Total purine derivative was similar in cows fed high RDS TMR and low RDS TMR. Consequently, estimated microbial N flow to the duodenum was similar in cows fed high RDS TMR and low RDS TMR. Conclusion: Results of this study show that ruminally degradable starch levels can influence whole-tract nutrient digestibility and nitrogen balance in dairy cows fed low corn-based starch diets, with no influence on performance.

In vitro and Lactation Responses in Mid-lactating Dairy Cows Fed Protected Amino Acids and Fat

  • Nam, I.S.;Choi, J.H.;Seo, K.M.;Ahn, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1705-1711
    • /
    • 2014
  • The objective of this study was to evaluate the effect of ruminally protected amino acids (RPAAs) and ruminally protected fat (RPF) supplementation on ruminal fermentation characteristics (in vitro) and milk yield and milk composition (in vivo). Fourteen mid-lactating Holstein dairy cows (mean weight $653{\pm}62.59kg$) were divided into two groups according to mean milk yield and number of days of postpartum. The cows were then fed a basal diet during adaptation (2 wk) and experimental diets during the treatment period (6 wk). Dietary treatments were i) a basal diet (control) and ii) basal diet containing 50 g of RPAAs (lysine and methionine, 3:1 ratio) and 50 g of RPF. In rumen fermentation trail (in vitro), RPAAs and RPF supplementation had no influence on the ruminal pH, dry matter digestibility, total volatile fatty acid production and ammonia-N concentration. In feeding trial (in vivo), milk yield (p<0.001), 4% fat corrected milk (p<0.05), milk fat (p<0.05), milk protein (p<0.001), and milk urea nitrogen (p<0.05) were greater in cows fed RPAAs and RPF than the corresponding values in the control group. With an index against as 0%, the rates of decrease in milk yield and milk protein were lower in RPAAs and RPF treated diet than those of basal diet group (p<0.05). In conclusion, diet supplemented with RPAAs and RPF can improve milk yield and milk composition without negatively affecting ruminal functions in Holstein dairy cows at mid-lactating.

Lactation performance and rumen fermentation in dairy cows fed a diet with alfalfa hay replaced by corn stover and supplemented with molasses

  • Wei, Zi-Hai;Liang, Shu-Lin;Wang, Di-Ming;Liu, Hong-Yun;Wanapat, Metha;Liu, Jian-Xin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1122-1127
    • /
    • 2019
  • Objective: The objective of current study was to investigate the lactation performance and rumen fermentation characteristics of dairy cows fed a diet with alfalfa hay replaced by corn stover but supplemented with molasses. Methods: Sixteen Holstein cows in mid-lactation were randomly assigned to 1 of 2 dietary treatments: i) alfalfa based diet (AH), and ii) corn stover based diet supplemented with molasses (CSM). The experiment was conducted according to a $2{\times}2$ crossover design with 22-d each period, consisting of 17 d for adaptation and 5 d for data and samples collection. Results: Dry matter intake and milk yield were higher for cows fed AH than CSM (p<0.01). Milk protein content and nitrogen conversion were higher (p<0.05), while milk urea nitrogen was lower (p<0.01) for cows fed AH than CSM-fed cows. Contents of milk total solids, fat and lactose were not different between two groups (p>0.10). Total rumen volatile fatty acid concentration tended to be higher (p = 0.06) for cows fed AH than CSM-fed cows. Molar proportion of acetate was lower (p = 0.04), but valerate was higher (p = 0.02) in cows fed AH than CSM-fed cows. Rumen concentration of propionate, and isobutyrate, and ratio of acetate to propionate tended to be different (p<0.10) between two groups. The feed cost per kilogram of milk was lower in CSM than AH (p<0.01). No differences were found in feed efficiency and most plasma parameters tested (p>0.10). Conclusion: In comparison with AH diet, CSM diet could be fed to dairy cows without negative effect on feed efficiency, ruminal fermentation, but economically beneficial, indicating that CSM could be an alternative choice for dairy farms instead of AH to feed midlactation dairy cows.

Negative association between high temperature-humidity index and milk performance and quality in Korean dairy system: big data analysis

  • Dongseok Lee;Daekyum Yoo;Hyeran Kim;Jakyeom Seo
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.588-595
    • /
    • 2023
  • The aim of this study was to investigate the effects of heat stress on milk traits in South Korea using comprehensive data (dairy production and climate). The dataset for this study comprised 1,498,232 test-day records for milk yield, fat- and protein-corrected milk, fat yield, protein yield, milk urea nitrogen (MUN), and somatic cell score (SCS) from 215,276 Holstein cows (primiparous: n = 122,087; multiparous: n = 93,189) in 2,419 South Korean dairy herds. Data were collected from July 2017 to April 2020 through the Dairy Cattle Improvement Program, and merged with meteorological data from 600 automatic weather stations through the Korea Meteorological Administration. The segmented regression model was used to estimate the effects of the temperature-humidity index (THI) on milk traits and elucidate the break point (BP) of the THI. To acquire the least-squares mean of milk traits, the generalized linear model was applied using fixed effects (region, calving year, calving month, parity, days in milk, and THI). For all parameters, the BP of THI was observed; in particular, milk production parameters dramatically decreased after a specific BP of THI (p < 0.05). In contrast, MUN and SCS drastically increased when THI exceeded BP in all cows (p < 0.05) and primiparous cows (p < 0.05), respectively. Dairy cows in South Korea exhibited negative effects on milk traits (decrease in milk performance, increase in MUN, and SCS) when the THI exceeded 70; therefore, detailed feeding management is required to prevent heat stress in dairy cows.

Studies on health management and nutritional evaluation by milk components analysis in Holstein cows IV. The relationship between milk composition from the first test within 35 days in milk and displaced abomasum in a large dairy herd of high yielding Holstein cows (젖소에서 유성분 분석을 통한 영양상태 평가 및 건강관리에 관한 연구 IV. 고능력우 위주의 대규모 목장에서 분만 후 첫 번째 유검정 성적과 제4위전위 질병과의 관련성)

  • Moon, Jin-san;Son, Chang-ho;Joo, Yi-seok;Kang, Hyun-mi;Jang, Gum-chan;Kim, Jong-man
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.3
    • /
    • pp.407-412
    • /
    • 2001
  • Milk data may be increasingly used as indicators of the protein-energy balance and actual farm feeding practices. It was related to milk production, nutritional and reproductive disorders. The purpose of this study was to investigate the relationship between level of fat, protein or milk urea nitrogen (MUN) from the first test within 35 days in milk and displaced abomasum (DA) in a large dairy herd with high yielding Holstein cows. Milk data from forty-five DA cases were compared to those from 90 healthy cows. Higher odds of DA diagnosis was found with higher 5.0% milk fat, lower 3.0% milk protein. Therefore, cows with a fat to protein ratio of>1.5 had higher risks for DA. Also, incidence rates of DA was higher in the cows which the level of MUN was lower than 12.0 mg/dl or higher than 25.0 mg/dl relative to healthy cows. These results indicate that cows diagnosed with DA were energy deficient prior to DA diagnosis. We conclude that level of fat, protein or MUN serve as a monitoring tool of protein and energy nutritional balance in early lactation cows and also as a significant predictor of risk for DA.

  • PDF

A Study on Sodium and Potassium Intakes and their Metabolisms of Preschool Children in Seoul Area (학령전 아동의 Sodium 과 Potassium 의 식이량 및 대사에 관한 연구)

  • 이기열
    • Journal of Nutrition and Health
    • /
    • v.20 no.1
    • /
    • pp.25-37
    • /
    • 1987
  • The purpose of this study was to estimate the sodium and potassium intakes and their metabolisms of preschool children, and to evaluate the relationship between the blood pressure and the related variables. The subjects consisted of ninety-five preschool children aged two to six years (male 57, female 38). Twenty-four hour urines of subjects were collected for the measurements of their volume, sodium, potassium, creatinine and urea nitrogen. At the same time, the questionnaire was designed to assess the sodium and potassium intakes. The' results obtained were as follows; 1) The urinary excretion of sodium in 24 hours was 54.6$\pm$22.4mEq(orI255.8mg)and dietary sodium intake was 2147.0$\pm$518.4mg. The dietary sodium intake significantly increased with increasing age(p=O.0151). However, daily sodium intake per unit body surface area did not show significant difference by age. 2)The urinary excretion of potassium in 24 hours was 14.2$\pm$7.6 mEq (or 555.2mg) and the potassium intake was 1133.8mg. 3) The urinary excretions of creatinine and urea nitrogen were 240.2$\pm$126.2mg and 2946.7$\pm$1693.9mg, respectively. 4) The principal food SOUTce of sodium intake was the seasoning group, which con\ulcornertributed 49.9% to total sodium intake. 5) The main food source of potassium intake was milk and milk products; from which 28.6% of total potassium intake was obtained. 6) The blood pressure showed highly positive correlations with height, weight and body surface area (p$\leq$O.OOl) . In addition, the blood pressure was found to be correlat\ulcornered with urinary sodium excetion and dietary sodium intake (p$\leq$O.Ol).

  • PDF

Seasonal and Regional Effects on Milk Composition of Dairy Cows in South Korea

  • Nam, Ki-Taeg;Kim, Ki-Hyun;Nam, In-Sik;Abanto, Oliver D.;Hwang, Seong-Gu
    • Journal of Animal Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.537-542
    • /
    • 2009
  • For a period of over 6 years, more than 160,000 milk samples were collected and analyzed to determine the influence of different seasonal temperatures and geographic regional location on milk composition in South Korea. Fat, protein, lactose, non fat milk solids (NFMS) and total solids (TS) contents were significantly higher among dairy cows milked in winter season than other seasons (p<0.05). In contrast, freezing point (FP), milk urea nitrogen (MUN) and somatic cell count (SCC) were significantly higher in summer season than other seasons (p<0.05). The average SCC in the autumn season was $358{\times}10^3$/ml, which was lower than any other seasons (p<0.05). These results may be due to the changes in temperature during different seasons. Meanwhile, milk produced by dairy cows in central region had higher fat, protein, lactose, NFMS, TS and MUN and had lower SCC compared to other regions (p<0.05). Fat, TS, FP, MUN and citric acid in northeast region were lower than other regions (p<0.05). The SCC was significantly higher in southeast region than those of other regions (p<0.05). As a result, it might be possible that the differences in feeding management in each different region may affect the milk composition. In conclusion, present results indicated that milk composition is clearly influenced by both season and regional location. Therefore, based on these results, development of different feeding systems, according to season and region is needed to produce high quality and satiable milk production.

The carryover effects of high forage diet in bred heifers on feed intake, feed efficiency and milk production of primiparous lactating Holstein cows

  • Chemere, Befekadu;Lee, Bae Hun;Nejad, Jalil Ghassemi;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.3
    • /
    • pp.208-215
    • /
    • 2017
  • This study was designed to investigate the carryover effects of high-forage to concentrate (F: C) diet in bred heifers on feed intake, feed efficiency (FE) and milk production of primiparous lactating Holstein cows. The experiment was conducted for 589 days (d) from onset of pregnancy through to the end of first lactation. Twenty-four bred heifers (Body weight: $BW=345.8{\pm}45.4kg$ and $15{\pm}1.2mon$ of age) randomly assigned to two groups of 3 pens containing 4 heifers each and fed high forage (HF) diet with F: C ratio of 91.7: 8.3% and low forage (LF) diet with F: C ratio of 77.8: 22.2% throughout the pregnancy period. After calving, lactating cows were fed total mixed ration (TMR) based diet. No differences (p > 0.05) were observed in dry matter intake (DMI) of bred heifers and primiparous lactating cows in both HF and LF groups. The FE of mid-to-late lactation period was higher (p< 0.05) in HF than LF group. However, the HF group showed higher (p < 0.05) milk yield, 4 % fat corrected milk (FCM) and energy corrected milk (ECM) than LF group during the 305 d lactation. The LF group showed higher (p < 0.05) milk fat, crude protein (CP), milk urea nitrogen (MUN), solid not fat (SNF) and somatic cell count (SCC) than HF group. It is concluded that restriction of F: C ratio to 91.7: 8.3% to bred heifers has the potential carryover effects to maintain higher milk yield and FE with no adverse effect on feed intake and milk composition of primiparous lactating Holstein cows.

Effect of Different Rumen-degradable Carbohydrates on Rumen Fermentation, Nitrogen Metabolism and Lactation Performance of Holstein Dairy Cows

  • Khezri, A.;Rezayazdi, K.;Mesgaran, M. Danesh;Moradi-Sharbabk, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.651-658
    • /
    • 2009
  • Four multiparous lactating Holstein cows fitted with rumen cannulae were fed diets varying in the amount and source of rumen-degradable carbohydrates (starch vs. sucrose) to examine their effects on rumen fermentation, nitrogen metabolism and lactation performance. A $4{\times}4$ Latin square with four diets and four periods of 28 days each was employed. Corn starch and sucrose were added to diets and corn starch was replaced with sucrose at 0 (0 S), 2.5 (2.5 S), 5.0 (5.0 S) 7.5% (7.5 S) of diet dry matter in a total mixed ration (TMR) containing 60% concentrate and 40% forage (DM basis). Replacing corn starch with sucrose did not affect (p>0.05) ruminal pH which averaged 6.41, but the ruminal pH for 7.5 S decreased more rapidly at 2 h after morning feeding compared with other treatments. Sucrose reduced ($p{\leq}0.05$) ruminal $NH_3-N$ concentration (13.90 vs. 17.09 mg/dl) but did not affect peptide-N concentration. There was no dietary effect on total volatile fatty acids (110.53 mmol/L) or the acetate to propionate ratio (2.72). No differences (p>0.05) in molar proportion of most of the individual VFA were found among diets, except for the molar proportion of butyrate that was increased ($p{\leq}0.05$) with the inclusion of sucrose. Total branched chain volatile fatty acids tended to increase ($p{\geq}0.051$) for the control treatment (0 S) compared with the 7.5 S treatment. Dry matter intake, body weight changes and digestibility of DM, OM, CP, NDF and ADF were not affected by treatments. Sucrose inclusion in the total mixed ration did not affect milk yield, but increased milk fat and total solid percentage ($p{\leq}0.05$). Sucrose tended ($p{\geq}0.063$) to increase milk protein percentage (3.28 vs. 3.05) and reduced ($p{\leq}0.05$) milk urea nitrogen concentration (12.75 vs. 15.48 mg/dl), suggesting a more efficient utilization of the rapidly available nitrogen components in the diet and hence improving nitrogen metabolism in the rumen.