• Title/Summary/Keyword: milk synthesis

Search Result 99, Processing Time 0.024 seconds

Effects of Forage Sources on Rumen Fermentation Characteristics, Performance, and Microbial Protein Synthesis in Midlactation Cows

  • Xua, Jun;Houa, Yujie;Yang, Hongbo;Shi, Renhuang;Wu, Caixia;Huo, Yongjiu;Zhao, Guoqi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.667-673
    • /
    • 2014
  • Eight multiparous Holstein cows ($632{\pm}12$ kg BW; $135{\pm}16$ DIM) were used in a replicated $4{\times}4$ Latin square design to evaluate the effects of forage sources on rumen fermentation characteristics, performance, and microbial protein (MCP) synthesis. The forage portion of the diets contained alfalfa hay (AH), oat hay (OH), Leymus chinensis (LC), or rice straw (RS) as the primary source of fiber. Diets were isonitrogenous and isocaloric, and cows were fed four corn silages based total mixed rations with equivalent nonfiber carbohydrate (NFC) and forage neutral detergent fiber (NDF). Dry matter intake was not affected by the source of dietary forages, ranging from 18.83 to 19.20 kg/d, consequently, milk yield was similar among diets. Because of the numerical differences in milk fat and milk protein concentrations, 4% FCM and ECM yields were unchanged (p>0.05). Mean rumen pH, NH3-N content, and concentrations of volatile fatty acids in the rumen fluid were not affected by the treatments (p>0.05). Dietary treatments did not affect the total tract apparent digestibility of dry matter, organic matter, and crude protein (p>0.05); however, digestibility of NDF and acid detergent fiber in RS diet was higher compared with AH, OH, and LC diets (p<0.05). Total purine derivative excretion was higher in cows fed AH, OH, and LC diets compared with those fed RS diet (p<0.05), consequently, estimated MCP synthesis was 124.35 g/d higher in cows fed AH diet compared with those fed RS diet (p<0.05). The results indicated that cows fed AH, OH, LC, and RS diets with an equivalent forage NDF and NFC have no unfavourable effect on the ruminal fermentation and productive parameters.

Examination of the xanthosine response on gene expression of mammary epithelial cells using RNA-seq technology

  • Choudhary, Shanti;Li, Wenli;Bickhart, Derek;Verma, Ramneek;Sethi, R.S.;Mukhopadhyay, C.S.;Choudhary, Ratan K.
    • Journal of Animal Science and Technology
    • /
    • v.60 no.7
    • /
    • pp.18.1-18.12
    • /
    • 2018
  • Background: Xanthosine treatment has been previously reported to increase mammary stem cell population and milk production in cattle and goats. However, the underlying molecular mechanisms associated with the increase in stem cell population and milk production remain unclear. Methods: Primiparous Beetal goats were assigned to the study. Five days post-partum, one mammary gland of each goat was infused with xanthosine (TRT) twice daily ($2{\times}$) for 3 days consecutively, and the other gland served as a control (CON). Milk samples from the TRT and CON glands were collected on the 10th day after the last xanthosine infusion and the total RNA was isolated from milk fat globules (MEGs). Total RNA in MFGs was mainly derived from the milk epithelial cells (MECs) as evidenced by expression of milk synthesis genes. Significant differentially expressed genes (DEGs) were subjected to Gene Ontology (GO) terms using PANTHER and gene networks were generated using STRING db. Results: Preliminary analysis indicated that each individual goat responded to xanthosine treatment differently, with this trend being correlated with specific DEGs within the same animal's mammary gland. Several pathways are impacted by these DEGs, including cell communication, cell proliferation and anti-microbials. Conclusions: This study provides valuable insights into transcriptomic changes in milk producing epithelial cells in response to xanthosine treatment. Further characterization of DEGs identified in this study is likely to delineate the molecular mechanisms of increased milk production and stem or progenitor cell population by the xanthosine treatment.

Blood and milk metabolites of Holstein dairy cattle for the development of objective indicators of a subacute ruminal acidosis

  • Hyun Sang Kim;Jun Sik Eom;Shin Ja Lee;Youyoung Choi;Seong Uk Jo;Sang Suk Lee;Eun Tae Kim;Sung Sill Lee
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1199-1208
    • /
    • 2023
  • Objective: The purpose of this study was to perform a comparative analysis of metabolite levels in serum and milk obtained from cows fed on different concentrate to forage feed ratios. Methods: Eight lactating Holstein cows were divided into two groups: a high forage ratio diet (HF; 80% Italian ryegrass and 20% concentrate of daily intake of dry matter) group and a high concentrate diet (HC; 20% Italian ryegrass and 80% concentrate) group. Blood was collected from the jugular vein, and milk was sampled using a milking machine. Metabolite levels in serum and milk were estimated using proton nuclear magnetic resonance and subjected to qualitative and quantitative analyses performed using Chenomx 8.4. For statistical analysis, Student's t-test and multivariate analysis were performed using Metaboanalyst 4.0. Results: In the principal component analysis, a clear distinction between the two groups regarding milk metabolites while serum metabolites were shown in similar. In serum, 95 metabolites were identified, and 13 metabolites (include leucine, lactulose, glucose, betaine, etc.) showed significant differences between the two groups. In milk, 122 metabolites were identified, and 20 metabolites (include urea, carnitine, acetate, butyrate, arabinitol, etc.) showed significant differences. Conclusion: Our results show that different concentrate to forage feed ratios impact the metabolite levels in the serum and milk of lactating Holstein cows. A higher number of metabolites in milk, including those associated with milk fat synthesis and the presence of Escherichia coli in the rumen, differed between the two groups compared to that in the serum. The results of this study provide a useful insight into the metabolites associated with different concentrate to forge feed ratios in cows and may aid in the search for potential biomarkers for subacute ruminal acidosis.

Effect of all-trans retinoic acid on casein and fatty acid synthesis in MAC-T cells

  • Liao, Xian-Dong;Zhou, Chang-Hai;Zhang, Jing;Shen, Jing-Lin;Wang, Ya-Jing;Jin, Yong-Cheng;Li, Sheng-Li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.1012-1022
    • /
    • 2020
  • Objective: Caseins and fatty acids of milk are synthesized and secreted by the epithelial cells of the mammary gland. All-trans retinoic acid (ATRA), an active metabolite of vitamin A, has been shown to promote mammary development. This study was conducted to determine the effect of ATRA on casein synthesis and fatty acid composition in MAC-T cells. Methods: MAC-T cells were allowed to differentiate for 4 d, treated with ATRA (0, 1.0, 1.5, and 2.0 μM), and incubated for 3 d. We analyzed the fatty acid composition, the mRNA expression of casein and fatty acid synthesis-related genes, and the phosphorylation of casein synthesis-related proteins of MAC-T cells by gas chromatography, quantitative polymerase chain reaction, and western blotting, respectively. Results: In MAC-T cells, ATRA increased the mRNA levels of αS1-casein and β-casein, janus kinase 2 (JAK2) and E74-like factor 5 of the signal transducer and activator of transcription 5 β (STAT5-β) pathway, ribosomal protein S6 kinase beta-1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 of the mammalian target of rapamycin (mTOR) pathway, inhibited the mRNA expression of phosphoinositide 3-kinase and eukaryotic initiation factor 4E of the mTOR pathway, and promoted the phosphorylation of STAT5-β and S6K1 proteins. Additionally, ATRA increased the de novo synthesis of fatty acids, reduced the content of long-chain fatty acids, the ratio of monounsaturated fatty acids to saturated fatty acids (SFA), the ratio of polyunsaturated fatty acids (PUFA) to SFA, and the ratio of ω-6 to ω-3 PUFA. The mRNA levels of acetyl-CoA carboxylase 1, fatty acid synthase, lipoprotein lipase, stearoyl-CoA desaturase, peroxisome proliferator-activated receptor gamma, and sterol regulatory element-binding protein 1 (SREBP1) were enhanced by ATRA. Conclusion: ATRA promotes the synthesis of casein by regulating JAK2/STAT5 pathway and downstream mTOR signaling pathway, and it improves the fatty acid composition of MAC-T cells by regulating SREBP1-related genes.

Effects of Saturated Long-chain Fatty Acid on mRNA Expression of Genes Associated with Milk Fat and Protein Biosynthesis in Bovine Mammary Epithelial Cells

  • Qi, Lizhi;Yan, Sumei;Sheng, Ran;Zhao, Yanli;Guo, Xiaoyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.414-421
    • /
    • 2014
  • This study was conducted to determine the effects of saturated long-chain fatty acids (LCFA) on cell proliferation and triacylglycerol (TAG) content, as well as mRNA expression of ${\alpha}s1$-casein (CSN1S1) and genes associated with lipid and protein synthesis in bovine mammary epithelial cells (BMECs). Primary cells were isolated from the mammary glands of Holstein dairy cows, and were passaged twice. Then cells were cultured with different levels of palmitate or stearate (0, 200, 300, 400, 500, and 600 ${\mu}M$) for 48 h and fetal bovine serum in the culture solution was replaced with fatty acid-free BSA (1 g/L). The results showed that cell proliferation tended to be increased quadratically with increasing addition of stearate. Treatments with palmitate or stearate induced an increase in TAG contents at 0 to 600 ${\mu}M$ in a concentration-dependent manner, and the addition of 600 ${\mu}M$ was less effective in improving TAG accumulation. The expression of acetyl-coenzyme A carboxylase alpha, fatty acid synthase and fatty acid-binding protein 3 was inhibited when palmitate or stearate were added in culture medium, whereas cluster of differentiation 36 and CSN1S1 mRNA abundance was increased in a concentration-dependent manner. The mRNA expressions of peroxisome proliferator-activated receptor gamma, mammalian target of rapamycin and signal transducer and activator of transcription 5 with palmitate or stearate had no significant differences relative to the control. These results implied that certain concentrations of saturated LCFA could stimulate cell proliferation and the accumulation of TAG, whereas a reduction may occur with the addition of an overdose of saturated LCFA. Saturated LCFA could up-regulate CSN1S1 mRNA abundance, but further studies are necessary to elucidate the mechanism for regulating milk fat and protein synthesis.

Phenylalanine and valine differentially stimulate milk protein synthetic and energy-mediated pathway in immortalized bovine mammary epithelial cells

  • Kim, Jungeun;Lee, Jeong-Eun;Lee, Jae-Sung;Park, Jin-Seung;Moon, Jun-Ok;Lee, Hong-Gu
    • Journal of Animal Science and Technology
    • /
    • v.62 no.2
    • /
    • pp.263-275
    • /
    • 2020
  • Studies on promoting milk protein yield by supplementation of amino acids have been globally conducted. Nevertheless, there is a lack of knowledge of what pathways affected by individual amino acid in mammary epithelial cells that produce milk in practice. Phenylalanine (PHE) and valine (VAL) are essential amino acids for dairy cows, however, researches on mammary cell levels are still lacking. Thus, the aim of this study was conducted to evaluate the effects of PHE and VAL on milk protein synthesis-related and energy-mediated cellular signaling in vitro using immortalized bovine mammary epithelial (MAC-T) cells. To investigate the effects of PHE and VAL, the following concentrations were added to treatment medium: 0, 0.3, 0.6, 0.9, 1.2, and 1.5 mM. The addition of PHE or VAL did not adversely affect cell viability compared to control group. The concentrations of cultured medium reached its maximum at 0.9 mM PHE and 0.6 mM VAL (p < 0.05). Therefore, aforementioned 2 treatments were analyzed for proteomics. Glucose transporter 1 and mammalian target of rapamycin mRNA expression levels were up-regulated by PHE (166% and 138%, respectively) (p < 0.05). Meanwhile, sodium-dependent neutral amino acids transporter type 2 (ASCT2) and β-casein were up-regulated by VAL (173% in ASCT2, 238% in and 218% in β-casein) (p < 0.05). A total of 134, 142, and 133 proteins were detected in control group, PHE treated group, and VAL treated group, respectively. Among significantly fold-changed proteins, proteins involved in translation initiation or energy metabolism were detected, however, expressed differentially between PHE and VAL. Thus, pathway analysis showed different stimulatory effects on energy metabolism and transcriptional pathways. Collectively, these results showed different stimulatory effects of PHE and VAL on protein synthesis-related and energy-mediated cellular signaling in MAC-T cells.

Milk Production, Blood Metabolites and Circulatory Levels of Hormones in Crossbred Goats

  • Singh, Mahendra;Ludri, R.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.963-967
    • /
    • 2002
  • Eighteen crossbred goats were selected from the Institute's goat herd to determine the changes in hormones, blood metabolites and yield and composition of milk during lactation. The blood and milk samples were collected from each goat in a heparinized vacutainer tubes at fortnightly interval for a period of 150 days. In milk samples, fat, protein and lactose contents were estimated while in blood plasma hormones viz., prolactin, GH, cortisol, insulin, $T_4$ and $T_3$ were measured using radioimmunoassay methods. The plasma concentration of prolactin, GH and cortisol were high during early lactation when the goats acquired peak milk yield. During remainder of lactation their concentration varied. The high NEFA concentration during early lactation indicated mobilization of body reserves as the body weights also decrease during early lactation. However, with the advancement of lactation, the body weights of the goats and the concentration of NEFA declined which indicated utilization of NEFA for energy yielding purposes in addition to fatty acid synthesis. The ambient temperatures did not influence plasma concentration of prolactin, GH, insulin, $T_3$ and $T_4$ during the lactation cycle. The fat content of milk varied significantly (p<0.01) but protein and lactose content of milk remains unchanged during different stages of lactation. Growth hormone was positively correlated with insulin (p<0.05) during lactation while prolactin had a positive correlation with lactose and plasma NEFA (p<0.01) and negative correlation with $T_3$ (p<0.05).

Myo-Inositol Synthesis in the Milk of Lactating Rats (쥐 우유중의 Myo-Inositol 생성에 관한 연구)

  • Byun, Si-Myung
    • Applied Biological Chemistry
    • /
    • v.19 no.3
    • /
    • pp.121-129
    • /
    • 1976
  • A high concentration of myo-Inositol in rat's milk was observed (61-91mg. of myo-Inositol per 100g of milk) by gas-liquid chromatographic method, using a 3% SE-52 column. Feeding experiments showed that approximately 85% of myo-Inositol in milk was from dietary origin: the rest was considered to be synthesized by 1L-myo-Inositol-1-phosphate lyase. Results suggested that the biosynthesis was not sufficiently high to permit the maintenance of its myo-Inositol level in milk. However, study $using(^{14}C)-glucose$ injection into lactating female rats confirmed biosynthesis of myo-Inositol from glucose in mammary gland. This biosynthesis reached a maximum within an hour after $(^{14}C)-glucose$ injection intraperitoneally as lactose biosynthesis did. Study using $(^3H)-myo-Inositol$ confirmed that most of the myo-Inositol in milk was transported from blood plasma myo-Inositol against a concentration gradient. About four hours after the beginning of the injection of $(^{14}C)-glucose$, the specific radioactivity of myo-Inositol in milk was 8% of that of glucose in the blood. When $(^3H)-myo-Inositol$ was injected, the specific radioactivity of myo-Inositol in milk was about 26% of that of blood six hours after injection.

  • PDF

Sugarcane bagasse as exclusive roughage for dairy cows in smallholder livestock system

  • de Almeida, Gleidiana Amelia Pontes;Ferreira, Marcelo de Andrade;Silva, Janaina de Lima;Chagas, Juana Catarina Cariri;Veras, Antonia Sherlanea Chaves;de Barros, Leonardo Jose Assis;de Almeida, Gledson Luiz Pontes
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.379-385
    • /
    • 2018
  • Objective: The study aimed to evaluate sugarcane bagasse as roughage in lactating cow on feed intake, digestibility, ingestive behavior, milk production and composition, and microbial protein synthesis. Methods: Ten Girolando cows at initial body weight of $450{\pm}25.6kg$ and at $143.7{\pm}30.7days$ in milk were assigned in two $5{\times}5$ Latin square designs. Five 21-day experimental periods were adopted ($1^{\circ}$ to 14-day: diets adaptation period; $15^{\circ}$ to 21-day: data collection and sampling period). The diets consisted of four different levels of sugarcane bagasse (45%, 50%, 55%, and 60%) and a control diet, commonly adopted in the region, based on spineless cactus (25% sugarcane bagasse), formulated to meet 12 kg/d milk yield. Results: The dry matter (DM), organic matter (OM), and total digestible nutrients intakes and DM and OM digestibilities observed for 45% and 50% bagasse inclusion were similar to control diet, while that 55% and 60% bagasse inclusion were lower. Cows fed control diet, and bagasse diets of 45%, and 50% levels had the nutritional requirements attended, that guaranteed 12 kg/d of milk yield. The crude protein intake and digestibility of cows fed 45%, 50%, and 55% of bagasse inclusion were similar to control diet. The neutral detergent fiber (NDF) intake and digestibility differ for all bagasse diets related to control diet, while the non-fiber carbohydrates intake and digestibility for cows fed 45% of bagasse were similar for control diet. The intakes and digestibilities of nutrients decreased linearly in function of bagasse inclusion; NDF and indigestible NDF intakes did not vary. The ruminating time, feeding and rumination efficiency, microbial protein synthesis and milk yield decreased linearly with sugarcane bagasse inclusion. Conclusion: Sugarcane bagasse decreases milk production; however, its inclusion level in between 45% to 50% associated to concentrate could replace diets based on spineless cactus for crossbred dairy cow's producing 12 kg/d of milk.

The Influence of DHA Supplementation in Maternal Diets on Fatty Acid Compositions of Plasma Lipids and Human Milk (수유기에 식이와 함께 섭취한 DHA가 산모의 혈액과 모유의 지질조성에 미치는 영향)

  • 조여원
    • Journal of Nutrition and Health
    • /
    • v.29 no.2
    • /
    • pp.213-222
    • /
    • 1996
  • The most abundant long-chain polyunsaturated fatty acid in brain lipids is docosahexaenoic acid(C22 : 6 N-3, DHA). It is incorporated into nerve tissues mostly in utero and during the first year of life. DHA in brain is derived from either pre-formed DHA in human milk or by infant hepatic synthesis from linolenic acid in milk. This study was designed to investigate the effects of DHA supplementation on fatty acid profiles in maternal plasma lipid and breast milk. Twenty lactating women participated in the study. Seven women took 3g of fish oil per day and vitamin E for 28 days starting from the day of giving birth. Five women consumed 1.5g of fish oil as well as tivamin E, and the rest took vitamin E supplements for the same period of time. Dietary questionnaires and 3 consecutive 24-h recalls were collected to evaluate theri nutritional status and food habits. Finding that DHA intake from fish was not significantly different among three experimental groups, the partcipants were instructed to continue eating their usual home diets. Milk samples were taken on the day of giving birth, as well as the 7th, 14th and 28th day being the supplement phase, and finally 2 weeks after the cessating of DHA supplements. The amounts of the fish oil supplements produced significant dose-dependent increased in the DHA content of milk and plasma, but to a lesser degree. Base-line for 28 days raised the level to 2.05$\pm$0.43% and 1.5g/day supplement produced DHA levels of 1.02$\pm$0.19%. The results of this study indicated that relatively small amount of dietary DHA supplementation significantly elevats DHA content in milk. This would clearly elevate the infant's DHA intake which in turn may have implications for the infant's brain development.

  • PDF