• 제목/요약/키워드: milk proteins

검색결과 230건 처리시간 0.026초

Quality properties of whole milk powder on chicken breast emulsion-type sausage

  • Kang, Kyu-Min;Lee, Sol-Hee;Kim, Hack-Youn
    • Journal of Animal Science and Technology
    • /
    • 제63권2호
    • /
    • pp.405-416
    • /
    • 2021
  • The aim of the study was to determine the effect of whole milk powder (WMP) as heterologous proteins on chicken breast emulsion-type sausages. The quality properties of WMP on such chicken breast emulsion-type sausages were investigated by measuring the proximate composition, pH, color, cooking yield, protein solubility, and by applying other methods, such as texture profile analysis (TPA), microphotograph, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and electronic nose. The crude fat, protein, and ash contents of 15% WMP samples were significantly higher than the control samples (p < 0.05). The redness of the cooked samples significantly increased with an increase in the WMP contents (p < 0.05). The cooking yield of WMP treated samples was significantly higher than the control sample (p < 0.05). Additionally, the hardness, gumminess, and chewiness of WMP treated samples were significantly higher than the control sample (p < 0.05). The sarcoplasmic and myofibrillar proteins of samples containing 15% WMP were significantly higher than the control samples (p < 0.05). The result of SDS-PAGE showed that the C protein, sarcoplasmic protein, actin, and tropomyosin increased with an increase in the WMP contents. The principal component analysis plot of WMP-treated samples was clearly different from that of the control samples. Based on these results, it was predicted that WMP could be useful as heterologous protein on emulsion-type sausage.

Characterization of Double Transgenic Mice Harboring Both Goat $\beta$-casein/hGH and Goat $\beta$-casein/hG-CSF Hybrid Genes

  • Oh, Keon-Bong;Lee, Chul-Sang
    • 한국발생생물학회지:발생과생식
    • /
    • 제13권3호
    • /
    • pp.191-198
    • /
    • 2009
  • In an attempt to simultaneously produce two human proteins, hGH and hG-CSF, in the milk of transgenic mice, we constructed goat $\beta$-casein-directed hGH and hG-CSF expression cassettes individually and generated transgenic mice by co-injecting them into mouse zygotes. Out of 33 transgenic mice, 29 were identified as double transgenic harboring both transgenes on their genome. All analyzed double transgenic females secreted both hGH and hG-CSF in their milks. Concentrations ranged from 2.1 to $12.4\;mg/m{\ell}$ for hGH and from 0.04 to $0.13\;mg/m{\ell}$ for hG-CSF. hG-CSF level was much lower than hGH level but very similar to that of single hG-CSF mice, which were introduced with hG-CSF cassette alone. In order to address the causes of concentration difference between hGH and hG-CSF in milk, we examined mRNA level of hGH and hG-CSF in the mammary glands of double transgenic mice and tissue specificity of hG-CSF mRNA expression in both double and single transgenic mice. Likewise protein levels in milk, hGH mRNA level was much higher than hG-CSF mRNA, and hG-CSF mRNA expression was definitely specific to the mammary glands of both double and single transgenic mice. These results demonstrated that two transgenes have distinct transcriptional potentials without interaction each other in double transgenic mice although two transgenes co-integrated into same genomic sites and their expressions were directed by the same goat $\beta$-casein promoter. Therefore goat $\beta$-casein promoter is very useful for the multiple production of human proteins in the milk of transgenic animals.

  • PDF

Bioactive Peptides in Milk and Dairy Products: A Review

  • Park, Young Woo;Nam, Myoung Soo
    • 한국축산식품학회지
    • /
    • 제35권6호
    • /
    • pp.831-840
    • /
    • 2015
  • Functionally and physiologically active peptides are produced from several food proteins during gastrointestinal digestion and fermentation of food materials with lactic acid bacteria. Once bioactive peptides (BPs) are liberated, they exhibit a wide variety of physiological functions in the human body such as gastrointestinal, cardiovascular, immune, endocrine, and nervous systems. These functionalities of the peptides in human health and physiology include antihypertensive, antimicrobial, antioxidative, antithrombotic, opioid, anti-appetizing, immunomodulatory and mineral-binding activities.

Effects of High-Pressure, Microbial Transglutaminase and Glucono-δ-Lactone on the Aggregation Properties of Skim Milk

  • Lee, Sang Yoon;Choi, Mi-Jung;Cho, Hyung-Yong;Davaatseren, Munkhtugs
    • 한국축산식품학회지
    • /
    • 제36권3호
    • /
    • pp.335-342
    • /
    • 2016
  • The object in this study is to investigate the effects of high pressure and freezing processes on the curdling of skim milk depending on the presence of transglutaminase (TGase) and glucono-δ-lactone (GdL). Skim milk was treated with atmospheric freezing (AF), high pressure (HP), pressure-shift freezing (PSF) and high pressure sub-zero temperature (HPST) processing conditions. After freezing and pressure processing, these processed milk samples were treated with curdling agents, such as TGase and GdL. Pressurized samples (HP, PSF and HPST) had lower lightness than that of the control. In particular, PSF had the lowest lightness (p<0.05). Likewise, the PSF proteins were the most insoluble regardless of whether they were activated by TGase and GdL, indicating the highest rate of protein aggregation (p<0.05). Furthermore, the TGase/GdL reaction resulted in thick bands corresponding to masses larger than 69 kDa, indicating curdling. Casein bands were the weakest in PSF-treated milk, revealing that casein was prone to protein aggregation. PSF also had the highest G' value among all treatments after activation by TGase, implying that PSF formed the hardest curd. However, adding GdL decreased the G' values of the samples except HPST-treated samples. Synthetically, the PSF process was advantageous for curdling of skim milk.

우유의 가열 및 비가열 살균 기술에 관한 연구 동향 (Impact of Thermal and Nonthermal Technologies in Milk Processing)

  • 박중근;이여진;윤준용;엄애선
    • Journal of Dairy Science and Biotechnology
    • /
    • 제33권3호
    • /
    • pp.223-229
    • /
    • 2015
  • Milk is a food with high nutritional value as it contains abundant water, proteins, vitamins, lactose, fat, minerals, enzymes, etc. However, in order to make milk suitable for intake, it should be thermally treated to eliminate microbiologically hazardous factors. Heat treatment is an essential sanitation process for milk, but various precautions must be taken in order to process and preserve it. Therefore, various techniques should be developed to minimize the nutrient loss and to ensure that milk is safe for consumption, conservation, and distribution. However, the existing thermal pasteurization methods are harmful and increase the nutrient loss; moreover, no new thermal pasteurization methods are being researched that are safe for the human health and minimize the nutrient loss. Hence, this study aims to review new processes for thermal (low temperatures) and no thermal pasteurization methods that can minimize the nutrient loss during milk pasteurization.

  • PDF

Comparison of Milk-clotting Activity of Proteinase Produced by Bacillus Subtilis var, natto and Rhizopus oligosporus with Commercial Rennet

  • Chen, Ming Tsao;Lu, Ying Yu;Weng, Tien Man
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권10호
    • /
    • pp.1369-1379
    • /
    • 2010
  • This study investigated purification and milk-clotting activity of the enzymes produced by Bacillus subtilis var, natto and Rhizopus oligosporus compared with that of commercial rennet. The clotting time, viscosity, tension and microstructure of the curd and electrophoretic patterns of milk proteins were determined. The milk-clotting activity/proteolytic activity ratios (MCA/PA ratio) of B. subtilis, R. oligosporus and commercial rennet were also compared. The results revealed that the curd formed by the commercial rennet had the highest viscosity and curd tension and the shortest clotting time among the three enzymes. However, curd produced by Rhizopus enzymes was ranked as second. From the MCA/PA ratio and electrophoretogram analyses it could be concluded that the enzyme produced by B. subtilis had the highest proteolytic activity, while the commercial rennet had the highest milk-clotting activity. Observations of microstructures of SEM showed that the three-dimensional network for curd formed by commercial rennet was denser, firmer and more smooth. The milk-clotting activity, specific activity, purification ratio and recovery of the purified enzymes produced by both the tested organisms were also determined with ion exchange chromatography and gel filtration.

Proteomic Approach Analysis of Mammary Membrane Proteins Expression Profiles in Holstein Cows

  • Yang, Yong-xin;Cao, Sui-zhong;Zhang, Yong;Zhao, Xing-xu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권6호
    • /
    • pp.885-892
    • /
    • 2009
  • To investigate host defense mechanisms for protecting the mammary gland from mastitis infection, the membrane fraction of mammary tissues from Holstein cows was purified by differential velocity centrifugation, and then the sodium dodecyl sulfate-polyacrylamid gel electrophoresis (SDS-PAGE) separated proteins were identified by ion trap mass spectrometer equipped with a Surveyor high performance liquid chromatography (HPLC) system. A total of 183 proteins were identified. Bioinformatics software was applied to analyse physicochemical characteristics of the identified proteins and to predict biochemical function. These data may provide valuable information to investigate the mechanisms of mammary gland milk secretion and infectious disease, and enable a clear identification of proteins and potential protein targets for therapies.

Somatic cell counts determination in cow milk by near infrared spectroscopy: A new diagnostic tool

  • Tsenkova, R.;Atanassova, S.;Kawano, S.;Toyoda, K.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.4104-4104
    • /
    • 2001
  • Milk somatic cell count (SCC) is a recognized indicator of cow health and milk quality. The potential of near infrared (NIR) spectroscopy in the region from 1100 to 2500nm to measure SCC content of cow milk was investigated. A total of 196 milk samples from 7 Holstein cows were collected for 28 days, consecutively, and analyzed for fat, protein, lactose and SCC. Three of the cows were healthy, and the rest had mastitis periods during the experiment. NIR transflectance milk spectra were obtained by the InfraAlyzer 500 spectrophotometer in a wavelength range from 1100 to 2500 nm. The calibration for logSCC was performed using partial least square (PLS) regression and different spectral data pretreatment. The best accuracy of determination was found for equation, obtained using smoothed absorbance data and 10 PLS factors. The standard error of calibration was 0.361, calibration coefficient of multiple correlation 0.868, standard error of prediction for independent validation set of samples 0.382, correlation coefficient 0.854 and the variation coefficient 7.63%. The accuracy of logSCC determination by NIR spectroscopy would allow health screening of cows, and differentiation between healthy and mastitic milk samples. When the spectral information was studied it has been found that SCC determination by NIR milk spectra was indirect and based on the related changes in milk composition. In the case of mastitis, when the disease occurred, the most significant factors that simultaneously influenced milk spectra were alteration of milk proteins and changes in ionic concentration of milk.

  • PDF

Co-expression of Human Proteins (IL-10, TPO and/or Lactoferrin) into Milk of Cross-Breed Transgenic Mouse

  • Zheng, Zhen-Yu;Lee, Hyo-Sang;Oh, Keon-Bong;Koo, Deog-Bon;Han, Yong-Mahn;Lee, Kyung-Kwang
    • Reproductive and Developmental Biology
    • /
    • 제32권1호
    • /
    • pp.45-49
    • /
    • 2008
  • We have previously produced transgenic (TG) mice expressing the human lactoferrin (hLF), interleukin-10 (hIL-10), and thrombopoietin (hTPO) proteins in the milk. In this study, we examined whether simple crossbreeding between two kids of a single transgenic mouse can produce double transgenics co-expressing two human proteins.. The hLF male, and the hIL-10 male were crossbred with the hIL-10 and hTPO females, and the hTPO female, respectively. PCR analysis for genotyping showed 32%, 23% and 24% double transgenic rates for hLF/hIL-10, hLF/hTPO, and hIL-10/hTPO transgenes, respectively. We analyzed the expression levels of the human proteins from double transgenic mice and compared those with their single transgenic siblings. All double transgenic co-expressed two human proteins at comparable levels to singles', unless hTPO was not co-expressed: for hLF, 1.1 mg/ml in hLF/hIL-10, whereas 0.5 mg/ml in hLF/hTPO; for hIL-10, 4.1 mg/ml in hIL-10/hLF, whereas 1.4 mg/ml in hIL-10/hTPO. Ihe downregulation of hTPO to half level of singles' was observed in double transgenic mice. The possible reason why hTPO co-expressed might lead to down-regulation of another human protein was discussed. These results suggested that double transgenic generated by crossbreeding between two singles' could be useful system for bioreactor.

Perspective of Membrane Technology in Dairy Industry: A Review

  • Kumar, Pavan;Sharma, Neelesh;Ranjan, Rajeev;Kumar, Sunil;Bhat, Z.F.;Jeong, Dong Kee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권9호
    • /
    • pp.1347-1358
    • /
    • 2013
  • Membrane technology has revolutionized the dairy sector. Different types of membranes are used in the industry for various purposes like extending the shelf life of milk without exposure to heat treatment, standardization of the major components of milk for tailoring new products as well increasing yield and quality of the dairy products, and concentrating, fractionation and purification of milk components especially valuable milk proteins in their natural state. In the cheese industry, membranes increase the yield and quality of cheese and control the whey volume, by concentrating the cheese milk. With the advancement of newer technology in membrane processes, it is possible to recover growth factor from whey. With the introduction of superior quality membranes as well as newer technology, the major limitation of membranes, fouling or blockage has been overcome to a greater extent.