• Title/Summary/Keyword: military equipment

Search Result 421, Processing Time 0.033 seconds

A War-time Engineering Equipment's Assignment and Operation Model (전시 공병장비 할당 및 운용 모형)

  • Jae-Hyeong Lee;Moon-Gul Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.294-303
    • /
    • 2023
  • During wartime, the operation of engineering equipment plays a pivotal role in bolstering the combat prowess of military units. To fully harness this combat potential, it is imperative to provide efficient support precisely when and where it is needed most. While previous research has predominantly focused on optimizing equipment combinations to expedite individual mission performance, our model considers routing challenges encompassing multiple missions and temporal constraints. We implement a comprehensive analysis of potential wartime missions and developed a routing model for the operation of engineering equipment that takes into account multiple missions and their respective time windows of required start and completion time. Our approach focused on two primary objectives: maximizing overall capability and minimizing mission duration, all while adhering to a diverse set of constraints, including mission requirements, equipment availability, geographical locations, and time constraints.

A Study on Improvement of Test & Evaluation of Vehicle Part in Mixed Equipment and Defense Industrial Technology (혼성장비 차량부 시험평가 및 방위산업기술 보호 제도 개선에 관한 연구)

  • Yoon, Heung-Soo;Ryu, Yeon-Seung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.241-249
    • /
    • 2018
  • The military purpose vehicles are developed by using the platform of civil vehicles according to the commercial vehicle expansion plan and military supplied product commercialization policy. But the information related to the military purpose vehicle which adopts the same platform with the civil vehicle is forced to be exposed because its information is revealed by containing into the maintenance manual and electric circuit diagram. Especially, the information disclosure should be blocked by reviewing the application of technology protection because the military vehicle becomes combating purposed mixed equipment when the missile and radar are mounted. The mixed equipment means the one configured with more than 2 types of equipment, and it is categorized into the main and sub equipment. This study was performed to derive the problems in Korean system for vehicle part test evaluation on the mixed equipment and the defense industry technology protection system, and to derive the methods for improving through interviews with the specialists. The conflicts between the civil laws and army regulation were reduced by adding a clause that the engine reflected with the newest emission gas standard should be mounted based on the time of force integration, and the commercialized military supplies were designated as element technology of defense industry technology in consideration of its roles and functions.

The Reliability-based Design Optimization for the Military Communication Equipment considering the Dimension Uncertainty (치수 불확실성이 고려된 군용 통신 장비의 신뢰성 기반 최적설계)

  • Park, Dae-Woong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1051-1058
    • /
    • 2011
  • The military communication equipment is required the high reliability for operating adequate functions under severe conditions. This reliability is the essential element for the quality of the product, for the uncontrolled factors, such as the clearance, damage of the material, the reduction of stiffness, which are the designer is unable to handle. In this paper, the uncertainty for the dimension was supposed to the probability model for the military communication equipment, and the average of the objective function was minimized for reducing design uncertainty. The reliability-based design optimization which was implemented the limit state function was formulated into the mathematical model, so the reliable optimized structure was implemented than the base-line design.

The Reliability-Based Design Optimization for the Military Communication Equipment considering the Design Uncertainty (설계 불확실성이 고려된 군용 통신 장비의 신뢰성 기반 최적설계)

  • Park, Dae-Woong;Moon, Woo-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.504-509
    • /
    • 2011
  • The military communication equipment is required the high reliability for operating adequate functions under severe conditions. This reliability is the essential element for the quality of the product, for the uncontrolled factors, such as the clearance, damage of the material, the reduction of stiffness, which are the designer is unable to handle. In this paper, the uncertainty for the design was supposed to the probability model for the military communication equipment, and the average of the objective function was minimized for reducing design uncertainty. The reliability-based design optimization which was implemented the limit state function was formulated into the mathematical model, so the reliable optimized structure was implemented than the base-line design.

  • PDF

Method And Mathematical Algorithm For Finding The Quasi-Optimal Purpose Plan

  • Piskunov, Stanislav;Yuriy, Rayisa;Shabelnyk, Tetiana;Kozyr, Anton;Bashynskyi, Kyrylo;Kovalev, Leonid;Piskunov, Mykola
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.88-92
    • /
    • 2021
  • A method and a mathematical algorithm for finding a quasi-optimal assignment plan with rectangular efficiency matrices are proposed. The developed algorithm can significantly reduce the time and computer memory consumption for its implementation in comparison with optimal methods.

Design Method of Internal Structure Based on Dynamic Characteristic Analysis of 2.5ton Military Vehicle (2.5톤 군용차량 동특성 분석에 따른 내부구조물 설계 방안)

  • Yang, Ina;Choi, Wookyun;Jung, Kyongwook;Shim, Donghyouk;Son, Donghyeop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • Electronic equipment mounted on military vehicles is exposed to external shocks and vibrations. This causes problems in tactical operation and also causes cost loss in equipment maintenance. Therefore, to optimize the test standards for military vehicles with vibration, dynamic characteristics should be analyzed and standardized through actual driving tests. In this paper, the internal structure of 2.5tons military vehicle is designed in the form of a drawer and lathe, and the dynamic characteristics are identified by experiment, and the design is proposed.

A Stochastic Optimization Model for Equipment Replacement Considering Life Uncertainty (수명의 불확실성을 반영한 추계학적 장비 대체시기 결정모형)

  • 박종인;김승권
    • Journal of the military operations research society of Korea
    • /
    • v.29 no.2
    • /
    • pp.100-110
    • /
    • 2003
  • Equipment replacement policy may not be defined with certainty, because physical states of any technological system may not be determined with foresight. This paper presents Markov Decision Process(MDP) model for army equipment which is subject to the uncertainty of deterioration and ultimately to failure. The components of the MDP model is defined as follows: ⅰ) state is identified as the age of the equipment, ⅱ) actions are classified as 'keep' and 'replace', ⅲ) cost is defined as the expected cost per unit time associated with 'keep' and 'replace' actions, ⅳ) transition probability is derived from Weibull distribution. Using the MDP model, we can determine the optimal replacement policy for an army equipment replacement problem.

A Study on the Gait Test Human Dynamic Simulation Using Gait Motion Capture and Foot Pressure Measurement : Analysis of Gait Pattern with Wearing Military Equipment of Korean Male Adult (Gait Motion Capture 및 족압 측정을 이용한 보행특성시험 및 동력학적 인체 시뮬레이션 연구 : 한국인 성인 남자의 군장착용 보행 특성 해석)

  • Lee S.H.;Lee Y.S.;Choi Y.J.;Lee J.W.;Chae J.W.;Choi E.J.;Kim I.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.877-880
    • /
    • 2005
  • This paper suggests gait analysis and gait simulation method using Gait Motion Capture equipment and plantar pressure measurement system. The gait of normal person and how it will be effected by added weight with wearing military equipments are studied by suggested method. It is measured that a change of gait pattern when wears military equipments with Korean male adult(height 180 cm, weight 70 kg) and simulated its results.

  • PDF

Reliability Analysis Procedures for Repairable Systems and Related Case Studies (수리 가능 시스템의 신뢰성 분석 절차 및 사례 연구)

  • Lee, Sung-Hwan;Yum, Bong-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.51-59
    • /
    • 2006
  • The purpose of this paper is to present reliability analysis procedures for repairable systems and apply the procedures for assessing the reliabilities of two subsystems of a specific group of military equipment based on field failure data. The mean cumulative function, M(t), the average repair rate, ARR(t), and analytic test methods are used to determine whether a failure process follows a renewal or non-renewal process. For subsystem A, the failure process turns out to follow a homogeneous Poisson process, and subsequently, its mean time between failures, availability, and the necessary number of spares are estimated. For subsystem B, the corresponding M(t) plot shows an increasing trend, indicating that its failure process follows a non-renewal process. Therefore, its M(t) is modeled as a power function of t, and a preventive maintenance policy is proposed based on the annual mean repair cost.

Recent Trend of Reliability Activities for Military Systems (군장비 신뢰성활동의 최근 동향)

  • Kim, Chul
    • Journal of Applied Reliability
    • /
    • v.7 no.3
    • /
    • pp.111-118
    • /
    • 2007
  • In 2000, US Army Test and Evaluation Command (ATEC) released the status of reliability requirement levels and achievements for the military equipment which evaluated through the operational tests from 1985 to 1990 and from 1996 to 2000. The rates of military equipments that do not meet reliability requirements are 59% from 1985 to 1990 and 80% from 1996 to 2000. Thus, the US Army has figured out causes, taken steps and put them into practice, This paper is about the recent reliability problems and the latest tendency about US military equipment to acquirere liability level.

  • PDF