• Title/Summary/Keyword: military aircraft

Search Result 531, Processing Time 0.023 seconds

Study on Aircraft Accident Investigation (군항공기사고조사에 관한 연구)

  • Kim, Hae-Ma-Joong;Ha, Hong-Young;Hong, Sang-Beom
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.18
    • /
    • pp.325-362
    • /
    • 2003
  • In an effort to enhance the independence of and expertise in military aircraft accident investigation, a permanent accident investigation board should be established. Establishing permanent accident investigation board would render the military accident investigation more reliable and would increase its public esteem. Because there is no provision governing the responsibilities of the investigation and cooperation between civil and military authority in case that both civil and military aircraft are involved, it is necessary to fill this gap by enacting appropriate laws. In case of civil aircraft accident investigation involving a military issue, it would be better to allow military authority to be involved in the investigation. For the betterment of investigation, it is also necessary to provide a field investigator an authority to directly collect relevant information. Since the sole purpose of accident investigation is to prevent the recurrence of aircraft accidents, the scope of information disclosure should be limited and the investigation report shall be used for neither criminal procedure nor disciplinary procedure so that the objectivity of the investigation should be ensured.

  • PDF

An Analysis of Core Technologies and Acquisition Methodology for Combat Aircraft Powerplants (전투기 추진기관 기술현황 분석 및 핵심기술 획득 방안)

  • 이기영;김해원;강수준
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.92-105
    • /
    • 2000
  • Core technologies of powerplants, which are necessary for the development of Korean type combat aircraft, are analyzed. And then, the acquisition methodologies for the technologies are proposed. With respect to the aircraft engine design and manufacturing technologies, simple basic technologies such as component manufacturing and assembling technology come to close to those of advanced countries, but the core technologies were not acquired or in the understanding level only. Therefore, the research on the component manufacturing technology should be specialized for buildup of international competition first, and the research on core technologies such as high pressure compressor design, blisk, FADEC and hollow fan blade design should be concentrated step by step by taking an active participation in the development project of international cooperative aircraft powerplants.

  • PDF

A Study to the Technical Criteria of Propulsion System for the Military Airworthiness Certification (군용항공기 감항인증을 위한 추진체 기술기준에 대한 고찰)

  • Jeon, Jingark;Kim, Sunglae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.205-206
    • /
    • 2017
  • This is a study on the propulsion criteria for airworthiness certification of the military aircraft. This treatise described the introduction of the airworthiness certification system, the features and difference between the military and commercial aircraft, the introduction of the standard airworthiness certification, the important technical criteria, and the several application instances of the criteria.

  • PDF

Airworthiness Standard Analysis about a Korea Fixed Wing Unmanned Aircraft (국내 고정익 무인항공기 감항인증 기술기준분석)

  • Lim, Joon-Wan;Roh, Jin-Chul;Ko, Joon Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.654-661
    • /
    • 2016
  • An unmanned aircraft refers to an aircraft which carries no human pilot and is operated under remote control or in autonomous operational mode. An unmanned aircraft system consist of a one system which include UAV(s), UAV control station and data link, etc. As the UAVs can perform the dull, dangerous and difficult missions, various kinds of UAVs with different sizes and weights have been developed and operated for both civil and military areas. It is important to develop the airworthiness certification criteria of the UAVs to minimize the risks of fatal impacts on human life and environment and to achieve the equivalent level of safety to the manned aircraft. Analysis of the KAS Part 23 and STANAG 4671 can provide guidelines for the generation of the airworthiness certification criteria for the UAVs in civil application.

Risk Management for R&D Projects in the Military Aircraft Systems (군용항공기 연구개발 사업의 리스크 관리)

  • Kim, Sung Hun;Lee, Hyun Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.76-84
    • /
    • 2021
  • Military aircraft R&D projects require large-scale investment in cost and time, and involve a complex coordination process in decision-making. The R&D project manager should determine the development management priorities as accurately as possible and focus on R&D capabilities, thereby reducing the risks of the aircraft R&D project. To this end, this study aims to reduce R&D risk by prioritizing cost, schedule, and performance, which are basic management factors used in R&D project management in defense project management regulations. Analytic Hierarchy Process (AHP) is applied using a questionnaire for managers in charge of aviation R&D under the Defense Acquisition Program Administration. As a primary result, the importance of the factors that the aircraft R&D project manager should consider was derived in the order of performance, cost, and schedule, and the priorities of performance and cost in the lower layer were also identified. In addition, in order to provide practical risk management measures to aircraft R&D project managers, the results of analyzing 28 cases of US National Transportation Safety Board accidents were compared and analyzed with the AHP analysis results, and management measures suitable for the situation were specified.

A Study on the System Engineering Application to KC-100 Aircraft Development (민간항공기개발 시스템엔지니어링 적용 연구)

  • Choi, Nag-Sun;Kang, Min-Seong;Kim, Kwang-Hae;Koh, Dae-Woo
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.5 no.2
    • /
    • pp.49-56
    • /
    • 2009
  • KC-100(KAI Civil Aircraft, Small Series) aircraft is 4 seats general aviation aircraft with single piston engine which is developing under FAA part 23 category by Korea Aerospace Industries(KAI) and will be a shadow program for civil aircraft safety infrastructure improvement. This aircraft will be the first civil aircraft developed in Korea meeting the Korean regulatory KAS Part 23 requirements. Type certification for KC-100 aircraft was applied at the second half of this year. The type certificate is expected to be issued after 3 years of design, prototype manufacturing, ground and flight tests. In this paper the system engineering process for civil aircraft was first reviewed. Next, the differences and similarities in the system development between military and civil aircraft were systematically examined using experiences for KAI military aircraft development program.

  • PDF

The Study of Optimal Performance Improvement Method for Aircraft of Various Variants within the Same Type (다양한 형상의 동일 기종 항공기에 대한 성능개량 최적 구현 방안 연구)

  • Kim, Youngil;Ahn, Seungbeom;Choi, Myeongseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.311-320
    • /
    • 2022
  • In this paper, we studied the optimal method of improving performance for aircraft having various variants within the same type. The study defined configuration of an entire fleet of aircraft being subject to a performance improvement program. And selected the most complicated aircraft configuration among them as a Standard Aircraft for modification by according to the proposed Aircraft Selection Process for developing an optimal Aircraft Performance Improvement Process. Based on the selected the Standard Aircraft, drew a system integration design result and carried out Evaluation Test and obtained Airworthiness Certification. Created the database with the design data of the Standard Aircraft, Evaluation Test, and Airworthiness Certification results, and applied it to variants of aircraft to complete the performance improvement program with optimized schedules and costs. By applying the proposed method to IFF performance improvement program, drew optimal system integration design and completed the program with minimized schedule.

A Study on the Invariant Recognition of Aircraft (항공기 불변 인식에 관한 연구)

  • 김창욱
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.88-100
    • /
    • 2000
  • The design of an automatic aircraft recognition system involves two parts. The first part is extraction of invariant features independent of scale, rotation and translation. The second part is determination of optimal decision procedures, which are needed in the classification process. In this research, we extracted invariant aircraft features regardless of size, rotation and translation using Fourier Descriptors and Zernike Moments and classified using neural networks.

  • PDF

A Study of the Effects of Hard Landing on Aircraft Structure (Hard Landing이 항공기 구조물에 미치는 영향성 연구)

  • Oh, Yong-Kyu;Sim, Sang-Ki;Shin, Ki-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.805-811
    • /
    • 2011
  • Aircraft MLG and wing structures have been recognized as fatigue critical structures and exposed to the risk of fatigue crack initiation and propagation. Furthermore, these structures are frequently subjected to serious dynamic loading condition during a Hard Landing which may lead to their failure. Especially, structural integrity of MLG and wing components is decreased as the flight time increased because of the fatigue damage accumulated on the aircraft. In this study, the effects of Hard Landing on the MLG and wing components of aging aircraft were evaluated by using numerical approach. To achieve the aim, a finite element model has been developed and simulations were conducted by varying the landing conditions. As a result, it was revealed that the high stress concentration phenomenon was occurred at the lower Side Brace of MLG. Thereby, the intensified inspection for the lower Side Brace should be considered to prevent unexpected aircraft mishap.

A Study on Restricted Category Type Certification Procedure of Surion Derivatives Rotorcraft (수리온파생형 회전익항공기 민간 제한형식증명 획득 절차에 관한 연구)

  • Kim, Yonghee;Park, Sanghyuk;Lee, Seunghyun;Kim, Sungjin;Kang, Youngho
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.54-61
    • /
    • 2020
  • For operating military aircraft, military certificate of airworthiness (MCA) must be obtained from military authority. Among procedures of general airworthiness certification, there is a military type certification process that aircraft design complies with military airworthiness certification criteria. The Surion is the first military rotorcraft which has obtained military type certificate, production validation and airworthiness certificate in Korea, and the Surion derivatives for special mission are being operated for government services. Based on Aviation Safety Act, in order to operate the Surion derivatives (military aircraft) for special purpose (such as emergency patient transportation and firefighting), the issuance of special airworthiness certificates was needed from civil airworthiness authority, and the restricted category type certification (RTC) is one of design approvals for special airworthiness certification to be streamlined. This study discussed the procedures for acquiring RTC for special purpose operation of the Surion derivatives classified as military derived aircraft, and suggested procedural ideas to improve Korean RTC system.