• Title/Summary/Keyword: miharaensis

Search Result 3, Processing Time 0.017 seconds

Environmentally Associated Spatial Distribution of a Macrozoobenthic Community in the Continental Shelf off the Southern Area of the East Sea, Korea (한국 동해 남부해역 대륙붕에 서식하는 대형저서동물군집 공간분포를 결정하는 환경요인)

  • Lee, Jung-Ho;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil;Choi, Tae Seob;Gim, Byeong-Mo;Ryu, Jongseong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.1
    • /
    • pp.66-75
    • /
    • 2014
  • This study aims to understand environmental factors that determine spatial distribution of macrozoobenthic community in the southern area (ca 100-500 m depth) of East Sea, Korea, known as a candidate site for carbon storage under the seabed. From sixteen locations sampled in the summer of 2012, a total of 158 species were identified, showing density of $843indiv/m^2$ and biomass of $26.2g\;WW/m^2$, with increasing faunal density towards biologically higher diverse locations. Principal component analysis showed that a total of 33 environmental parameters were reduced to three principal components (PC), indicating sediment, bottom water, and depth, respectively. As sand content was increasing, number of species increased but biomass decreased. Six dominant species including two bivalve species favored high concentrations of ${\Omega}$ aragonite and ${\Omega}$ calcite, indicating that the corresponding species can be severely damaged by ocean acidification or $CO_2$ effluent. Cluaster analysis based on more than 1% density dominant species classified the entire study area into four faunal assemblage (location groups), which were delineated by characteristic species, including (A) Ampelisca miharaensis, (B) Edwardsioides japonica, (C) Maldane cristata, (D) Spiophanes kroeyeri, and clearly separated in terms of geography, bottom water and sediment environment. Overall, a discriminant function model was developed to predict four faunal assemblages from five simply-measured environmental variables (depth, sand content in sediment, temperature, salinity and pH in bottom water) with 100% accuracy, implying that benthic faunal assemablages are closed linked to certain combinations of abiotic factors.

A Preliminary Study of the Effect of Pelagic Organisms on the Macrobenthic Community in the Adjacent East China Sea and Korea Strait (표영생물이 동중국해 주변 해역과 대한해협의 대형저서동물 군집에 미치는 영향 파악을 위한 선행 연구)

  • Yu, Ok-Hwan;Paik, Sang-Gyu;Lee, Hyung-Gon;Kang, Chang-Keun;Kim, Dong-Sung;Lee, Jae-Hac;Kim, Wong-Seo
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.303-312
    • /
    • 2008
  • Despite the impacts of the climate changes on the pelagic ecosystem, few studies have examined the pelagic-benthic coupling in the adjacent East China Sea and Korea Strait. Therefore, the species composition and abundance of the macrobenthic community, as well as the potential food sources of benthic fauna were investigated in the present study using stable isotope analysis (${\delta}^{13}C\;and\;{\delta}^{15}N$) for suspended particulate organic matter (SPOM), sedimentary organic matter (SOM), phytoplankton, and zooplankton. A total of 157 macrobenthic fauna were collected, and the density of the macrobenthic fauna ranged from 4 to 434 ind./0.25 $m^2$, with an average density of 149 ind./0.25 $m^2$. The density of the benthic fauna increased moving from offshore shelf sites to coastal sites adjacent to the Korea Strait. Cluster analysis showed that the macrobenthic communities consisted of three distinct groups: group A in the Korea Strait, group B in the East China Sea, and group C near Ieodo. The dominant species in group A were the amphipods Photis japonica and Ampelisca miharaensis, followed by the polychaete Scolotoma longifolia. Environmental variables, such as the temperature of the seawater and sediment, and oxygen, and chlorophyll a levels, appeared to affect the structure of the community, suggesting the importance of coupling with the pelagic system. The ${\delta}^{13}C$ values of SPOM and zooplankton ranged from -22.97 to -23.5% and -19.92 to -21.86%, respectively, showing a relatively narrow range(<1%) between the two components. The difference between the ${\delta}^{13}C$ values of SOM and pelagic organic matter was also within 1%, suggesting that the SOM originated from the pelagic system, which is an important factor controlling the macrobenthic community.