• Title/Summary/Keyword: middle lamella

Search Result 49, Processing Time 0.02 seconds

The Middle Lamella Remainders on the Surface of Various Mechanical Pulp Fibres

  • Li, Kecheng;Tan, Xuequan;Yan, Dongbo
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.51-59
    • /
    • 2006
  • The surface of various mechanical pulp fibres including thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), and alkaline peroxide mechanical pulp (APMP) fibres, were characterized using SEM, AFM, and XPS. With SEM and AFM, middle lamella material was observed to be non-fibrillar, patch-like, while fibre secondary wall was observed to have a microfibrillar structure. It was found that after the first-stage refiner, lignin-rich middle lamella remainders are present on the fibre surface of all three pulps, although most of the fibre surfaces expose microfibrillar structure. After the final-stage refining, large amounts of granules are present on the TMP fibre surface. In contrast, most middle lamella remainders remain on the surface of CTMP fibres after final stage refining and even after peroxide bleaching. XPS results have confirmed that the non-fibrillar surface material is the lignin-rich middle lamella remainder., and the remainders of middle lamella contribute to the high surface lignin concentration.

  • PDF

Changes in the cell structure during maturation and postharvest of persimmon fruits (감과실의 성숙과 추숙중 조직의 변화)

  • Shin, Seung-Ryeul;Song, Jun-Hee;Kim, Soon-Dong;Kim, Kwang-Soo
    • Applied Biological Chemistry
    • /
    • v.34 no.1
    • /
    • pp.32-37
    • /
    • 1991
  • Cell and intercelullar space enlarged during maturation. The cell of soft persimmon was separated from each other. The degradation of middle lamella exhibited in mature persimmon and small vesicle appeared in cytoplasm of turning and mature persimmon. The middle lamella and cell wall were degraded during softening.

  • PDF

Changes in the Cell Wall Components and Cell Structure of Tomato Fruits during Maturation (토마토 과실의 성숙중 세포벽 성분 및 조직의 변화)

  • 신승렬;문광덕
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.2
    • /
    • pp.274-278
    • /
    • 1996
  • 토마토 과실의 연화현상의 주 원인으로 판단되는 세포벽의 형태적 변화를 조사하기 위하여 성숙 단계별로 취하여 과실의 경도, 세포벽 구성 성분의 변화 및 세포벽의 변화를 조사하였다. 과육의 경도는 적숙기 이후부터 급셕한 감소를 나타내었다. 세포벽 함량은 성숙 중에 감소하였고 가용성 펙틴의 증가와 불용성 펙틴의 감소는 적숙기와 식용 적기 사이에서 가장 현저했으며, 총 펙텐의 함량은 다소 감소하는 경향을 나타내었다. 성숙에 따른 토마토 과육의 세포 및 세포벽의 형태적 변화를 현미경으로 관찰한 결과, 수확기까지의 토마토에서는 middle lamella와 세포내 기관들이 잘 관찰되었으나, 연화가 진행됨에 따라 식용 적기의 토마토에는 middle lamella를 관찰할 수 없었으며 과숙기 에서는 middle lamella의 가용화와 함께 세포벽의 부분적인 분해와 세포분리현상이 관찰되었다.

  • PDF

A review on the softening of the fermented vegetables and the fruits (침채류와 과실의 연화현상에 관한 고찰)

  • 이희섭
    • Journal of the Korean Home Economics Association
    • /
    • v.34 no.4
    • /
    • pp.403-414
    • /
    • 1996
  • The softening of the femented vegetables and the fruits was resulted from the degradation of pectin substances, cellulose, hemicellulose by polygalacturonase(PG), pectinesterase(PE), Cx-cellulase, $\beta$-galctosidase. The conversion of insoluble pectin to soluble pectin in cell wall-middle lamella was a major factor in the changes of firmness. Ca2+ was substantially increased firmness. However, Ca2+ could be removed from cell wall by chelating agents such as oxalic acid and citric acid. And Ca2+ was replaced with Na+ by ion exchange reaction. Ca2+ deficient tissue was vulnerable to attack by PG. Preheating treatment and Ca2+ addition is most effective in inhibiting the vegetable food softening and in increasing middle lamella-cell wall regidity, which PE activation by preheating treatment and Ca2+ addition could created more anionic carboxyl groups for cationic materials binding such as Ca2+ and chitosan and for polypectategel formation. Excessive demethylation by PE was associated with loosening of middle lamella cell wall components and softening.

  • PDF

Microstructure of Lupin Seed;a Comparative Study With Soybean (루핀콩과 대두의 미세구조에 관한 비교 연구)

  • Lee, Cherl-Ho;Kim, Jeong-Kyo
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.454-459
    • /
    • 1985
  • The structure of the seed of Lupinue angustifolius was studied in order to investigate the Food quality of lupin seed in comparision with soybean. The cotyledonary cells of lupinseed was in egg-like shape and much (more than 4 times) larger than those of soybean. The microstructure of cotyledonary cells of lupinseed was characterized with thick cell wall having distinct pit-pairs. The protein bodies in lupinseed cotyledon cell contained numerous crystaloids, which was absent in soybean. The middle lamella of soybean cell was partially disintegrated by excessive heat treatment ($120^{\circ}C$, 20 min), whereas those of lupinseed did not change much by heting at $120^{\circ}C$ for 130 min.

  • PDF

Changes of the Cell Wall Structures during Maturation of Jujube Fruits (성숙 중 대추의 세포벽 조직 변화)

  • 신승렬;손미애;김주남;김광수
    • Food Science and Preservation
    • /
    • v.5 no.4
    • /
    • pp.342-345
    • /
    • 1998
  • This study was investigated to the structure of cell wall during maturation for the research of softening of jujube fruits. Cell was hardly combined with each other untill turning stage, but middle lamella of cell wall was splited at mature stage and was observed splited cell. The middle lamella of cell wall was not observed at green mature stage, but was observed at turning stage. Cell wall was degraded at mature stage. It was observed mitochondria, endoplasmic reticulum et. at in jujube fruit of green mature stage, but cytoplasm and organelle was attached on cell wall as vacuole was grown up after turning stage.

  • PDF

Chemical characteristics of Compound middle lamella lignin (복합 세포간층 Lignin의 화학적 성상)

  • Eom, Tae Jin
    • Current Research on Agriculture and Life Sciences
    • /
    • v.9
    • /
    • pp.103-108
    • /
    • 1991
  • The chemical characteristics of lignin in the differentiating xylem were investigated and compared with those of mature-wood. The compound middle lamella lignin deposited in the early stage of lignification of cell walls in the softwood(Larch) as well as the hardwood(Birch) was confirmed to be the so-called guaiacyl-type lignin and was found to have a relatively larger content of phenoxy hydroxyl group as terminal units and to be more abundant in condensed-type structures like as phenylcoumaran structures compared with mature-wood lingin.

  • PDF

Species identification and microscopic structure of ancient wood excavated from the remains( II ) -Degradation of ancient woods- (출토고목재의 수종과 조직구조에 관한 연구( II ) -출토고목재의 부후형태-)

  • KANG, A. K.;PARK, S. J.
    • Journal of Conservation Science
    • /
    • v.2 no.2 s.2
    • /
    • pp.15-24
    • /
    • 1993
  • To understand the morphological change of ancient woods, samples classified by cell type, burial environment and species were collected and observed using microscopy. Decay of wood by cell type could classified into two types. First, degraded secondary wall was formed granular residues in $S_2$ layer and was remained $S_3$ layer and compound middle lamella. Second, the cell wall was slightly degraded and cracked in secondary wall. A gradual thinning of cell wall was occured. The compound middle lamella was separated from secondary wall. The resistance of degradation is increased at vessels, parenchyma, and tracheid and wood fiber in the order named. The type of degradation by species could be classified into four types. Overall degradation type; the degradation of cell wall is usually heavy and the extent of degradation Varies by part of the same sample. Partial degradation type ; this type shows severely different decay type by part of the sample. Nondegraded cells were mixed with degraded cells on the same sample. Erose degradation type ; thinning of the cell wall was occoured and the degradation type was different by part. Slight degradation types ; secondary wall was slightly degraded, cracked and separated from compound middle lamella. Considering different type of burial environment, dry wood was similiar to sound wood and slightly decayed. Waterlogged and peat burial wood was heavilydecayed. Between species of under the same environment, decay type and extent were diferentiated from each other.

  • PDF

Topology and geometry optimization of different types of domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.1-25
    • /
    • 2016
  • Domes are architectural and elegant structures which cover a vast area with no interrupting columns in the middle, and with suitable shapes can be also economical. Domes are built in a wide variety of forms and specialized terms are available to describe them. According to their form, domes are given special names such as network, lamella, Schwedler, ribbed, and geodesic domes. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The network, lamella, ribbed and Schwedler domes are studied to determine the optimum number of rings, the optimum height of crown and tubular sections of these domes. The minimum volume of each dome is taken as the objective function. A simple procedure is defined to determine the dome structures configurations. This procedure includes calculating the joint coordinates and element constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). The wind loading act on domes according to ASCE 7-05 (American Society of Civil Engineers). This paper will explore the efficiency of various type of domes and compare them at the first stage to investigate the performance of these domes under different kind of loading. At the second stage the wind load on optimum design of domes are investigated for Schwedler dome. Optimization process is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for domes.

The Changes of Pectic Substances and Enzyme Activity, Texture, Microstructure of Anchovy Added Kimchi (멸치 첨가 김치의 숙성 중 펙틴 함량, 효소 활성, 조직감과 미세구조의 변화)

  • 송영선;류복미;전영수;문갑순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.3
    • /
    • pp.470-477
    • /
    • 1996
  • This study was intended to observe the changes of pectic substances and enzyme activities, texture, microstructure of anchovy added kimchi during fermentation for 4 weeks at 4$^{\circ}C$. Content of alcohol insoluble solid(AIS) and HCl soluble pectin(HClSP) were decreased, whereas content of hot water soluble pectin(HWSP) was increased during fermentation. Content of HClSP was higher and HWSP was lower in anchovy added kimchi than control. Activity of pectinesterase(PE) was decreased, whereas activity of polygalacturonase(PG) was increased during fermentation. In anchovy added kimchi, PG activity was lower than control. Changes in microstructure of Chinese cabbage and kimchi during fermentation was lower than control. Changes in microstructure of Chinese cabbage and kimchi during fermentation was observed ; in the raw cabbage, parenchyma cells, intercellular space and middle lamella were clearly shown. But in salted cabbage, middle lamella became separated. In the late stage of fermentation, parenchyma cell walls were wrinkled and collapsed. Puncture forces of kimchi were decreased, whereas cutting forces of kimchi were increased as fermentation proceeded. The firmness was slightly higher in anchovy added kimchi than control at the late stage fermentation, which may be explained by the PG activity.

  • PDF