• 제목/요약/키워드: mid point method

검색결과 146건 처리시간 0.034초

BCD 기반 분산처리 기법을 이용한 연계전력시장 최적화 (Block Coordinate Descent (BCD)-based Decentralized Method for Joint Dispatch of Regional Electricity Markets)

  • 문국현;주성관
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.23-27
    • /
    • 2009
  • The joint dispatch of regional electricity markets can improve the overall economic efficiency of interconnected markets by increasing the combined social welfare of the interconnected markets. This paper presents a new decentralized optimization technique based on Augmented Lagrangian Relaxation (ALR) to perform the joint dispatch of interconnected electricity markets. The Block Coordinate Descent (BCD) technique is applied to decompose the inseparable quadratic term of the augmented Lagrangian equation into individual market optimization problems. The Interior Point/Cutting Plane (IP/CP) method is used to update the Lagrangian multiplier in the decomposed market optimization problem. The numerical example is presented to validate the effectiveness of the proposed decentralized method.

Nonlinear analysis of composite beams with partial shear interaction by means of the direct stiffness method

  • Ranzi, G.;Bradford, M.A.
    • Steel and Composite Structures
    • /
    • 제9권2호
    • /
    • pp.131-158
    • /
    • 2009
  • This paper presents a modelling technique for the nonlinear analysis of composite steel-concrete beams with partial shear interaction. It extends the applicability of two stiffness elements previously derived by the authors using the direct stiffness method, i.e. the 6DOF and the 8DOF elements, to account for material nonlinearities. The freedoms are the vertical displacement, the rotation and the slip at both ends for the 6DOF stiffness element, as well as the axial displacement at the level of the reference axis for the 8DOF stiffness element. The solution iterative scheme is based on the secant method, with the convergence criteria relying on the ratios of the Euclidean norms of both forces and displacements. The advantage of the approach is that the displacement and force fields of the stiffness elements are extremely rich as they correspond to those required by the analytical solution of the elastic partial interaction problem, thereby producing a robust numerical technique. Experimental results available in the literature are used to validate the finite element proposed in the paper. For this purpose, those reported by Chapman and Balakrishnan (1964), Fabbrocino et al. (1998, 1999) and Ansourian (1981) are utilised; these consist of six simply supported beams with a point load applied at mid-span inducing positive bending moment in the beams, three simply supported beams with a point load applied at mid-span inducing negative bending moment in the beams, and six two-span continuous composite beams respectively. Based on these comparisons, a preferred degree of discretisation suitable for the proposed modelling technique expressed as a function of the ratio between the element length and depth is proposed, as is the number of Gauss stations needed. This allows for accurate prediction of the nonlinear response of composite beams.

초기 처짐을 갖는 Spherical Shell의 동적 특성에 관한 연구(II) - 초기 처짐에 따른 동적 특성 - (Dynamic Characteristics Analysis of Spherical Shell with Initial Deflection(II) - Effects of Initial Deflection -)

  • 조진구
    • 한국농공학회지
    • /
    • 제40권5호
    • /
    • pp.91-99
    • /
    • 1998
  • The widespread use of thin shell structures has created a need for a systematic method of analysis which can adequately account for arbitrary geometric form and boundary conditions as well as arbitrary general type of loading. Therefore, the stress and analysis of thin shell has been one of the more challenging areas of structural mechanics. A wide variety of numerical methods have been applied to the governing differential equations for spherical and cylindrical structures with a few results applicable to practice. The analysis of axisymmetric spherical shell is almost an every day occurrence in many industrial applications. A reliable and accurate finite element analysis procedure for such structures was needed. Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometry changes on the response is also significant in many cases. Therefore both material and geometric nonlinear effects should be considered. In general, the shell structures designed according to quasi-static analysis may fail under conditions of dynamic loading. For a more realistic prediction on the load carrying capacity of these shell, in addition to the dynamic effect, consideration should also include other factors such as nonlinearities in both material and geometry since these factors, in different manner, may also affect the magnitude of this capacity. The objective of this paper is to demonstrate the dynamic characteristics of spherical shell. For these purposes, the spherical shell subjected to uniformly distributed step load was analyzed for its large displacements elasto-viscoplastic static and dynamic response. Geometrically nonlinear behaviour is taken into account using a Total Lagrangian formulation and the material behaviour is assumed to elasto-viscoplastic model highly corresponding to the real behaviour of the material. The results for the dynamic characteristics of spherical shell in the cases under various conditions of base-radius/central height(a/H) and thickness/shell radius(t/R) were summarized as follows : The dynamic characteristics with a/H. 1) AS the a/H increases, the amplitude of displacement in creased. 2) The values of displacement dynamic magnification factor (DMF) were ranges from 2.9 to 6.3 in the crown of shell and the values of factor in the mid-point of shell were ranged from 1.8 to 2.6. 3) As the a/H increases, the values of DMF in the crown of shell is decreased rapidly but the values of DMF in mid-point shell is increased gradually. 4) The values of DMF of hoop-stresses were range from 3.6 to 6.8 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.3 to 2.6, and the values of DMF of stress were larger than that of displacement. The dynamic characteristics with t/R. 5) With the thickness of shell decreases, the amplitude of the displacement and the period increased. 6) The values of DMF of the displacement were ranged from 2.8 to 3.6 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.1 to 2.2.

  • PDF

초기 처짐을 갖는 Spherical Shell의 동적 특성에 관한 연구 (I) -기하학적 형상에 따른 동적 특성- (Dynamic Characteristics Analysis of Spherical Shell with Initial Deflection(I))

  • 조진구
    • 한국농공학회지
    • /
    • 제40권3호
    • /
    • pp.113-121
    • /
    • 1998
  • The widespread use of thin shell structures has created a need for a systematic method of analysis which can adequately account for arbitrary geometric form. Therefore, the stress analysis of thin shell has been one of the more challenging areas of structural mechanics. The analysis of axisymmetric spherical shell is almost an every day occurrence in many industrial applications. A reliable and accurate finite element analysis procedure for such structures was needed. In general, the shell structures designed according to quasi-static analysis may fail under conditions of dynamic loading. For a more realistic prediction on the load carrying capacity of these shell, in addition to the dynamic effect, consideration should also include other factors such as nonlinearities in both material and geometry since these factors, in different manner, may also affect the magnitude of this capacity. The objective of this paper is to demonstrate the dynamic characteristics of spherical Shell. For these purpose, the spherical shell subjected to uniformly distributed step load was analyzed for its large displacements elasto-viscoplastic dynamic response. The results for the dynamic characteristics of spherical shell in the cases under various conditions of base-radius/central height(a/H) and thickness/shell radius(t/R) were summarized as follows: 1. The dynamic characteristics with a/H, 1) As the a/H increases, the amplitude of displacement increased. 2) The values of displacement Dynamic Magnification Factor (DMF) range from 2.9 to 6.3 in the crown of shell and the values of factor in the mid-point of shell range from 1.8 to 2.6. 3) As the a/H increases, the values of DMF in the crown of shell is decreased rapidly but the values of DMF in mid-point of shell is increased gradually. 4) The values of DMF of hoop-stresses range from 3.6 to 6.8 in the crown of shell and the values of factor in the mid-point of shell range from 2.3 to 2.6, the values of DMF of stress were larger than that of displacement. 2. The dynamic characteristics with t/R, 1) With the decrease of thickness of shell decreses, the amplitude of the displacement and the period increased. 2) The values of DMF of the displacement were range from 2.8 to 3.6 in the crown of shell and the values of factor in the mid-point of shell were range from 2.1 to 2.2.

  • PDF

한국 남부해역의 수온약층 추출 알고리즘 개발 (Development of Algorithms for Extracting Thermocline Parameters in the South Sea of Korea)

  • 윤동영;최현우
    • Ocean and Polar Research
    • /
    • 제34권2호
    • /
    • pp.265-273
    • /
    • 2012
  • A new algorithm was developed, not only to detect the existence of a thermocline, but also to extract the thermocline parameters (such as thermocline thickness, mixed layer thickness, maximum temperature gradient, and temperature difference of thermocline), using the vertical profile of water temperature. According to Kappa analysis, in order to find adequate threshold values of vertical water temperature gradients ${\Delta}T$ ($^{\circ}C/m$), agreement and reliability were 87% and 0.74 respectively, in the conditions of maximum ${\Delta}T{\geq}0.5$ and surface and bottom layers ${\Delta}T<{\mid}0.2{\mid}$. Also, three different kinds of methods, viz. 1. Gradient method, 2. Hyperbolic tangent method, and 3. Differential hyperbolic tangent method, were tested to extract the key parameters of a thermocline. Comparing the results of three different methods, the differential hyperbolic tangent method was the most appropriate to extract the start and end point of a thermocline curve.

Mid-upper-arm circumference as a screening measure for identifying children with elevated body mass index: a study for Pakistan

  • Asif, Muhammad;Aslam, Muhammad;Altaf, Saima
    • Clinical and Experimental Pediatrics
    • /
    • 제61권1호
    • /
    • pp.6-11
    • /
    • 2018
  • Purpose: Mid-upper-arm circumference (MUAC) is considered an alternative screening method for obesity. The aims of this investigation were to examine the ability of MUAC to correctly identify children with elevated body mass index (BMI) and to determine the best MUAC cutoff point for identification of children with high BMI. Methods: Anthropometric measurements (height, weight, and MUAC) from a cross-sectional sample of 7,921 Pakistani children aged 5-14 years were analyzed. Pearson correlation coefficients between MUAC and other anthropometric measurements were calculated. Receiver operating characteristic curve analysis was used to determine the optimal MUAC cutoff point for identifying children with high BMI. Results: Among 7,921 children, the mean (${\pm}$standard deviation) age, BMI, and MUAC were 10.00 (${\pm}2.86years$), 16.16 (${\pm}2.66kg/m^2$), and 17.73 (${\pm}2.59cm$), respectively. The MUAC had a strong positive correlation with BMI. The optimal MUAC cutoff points indicating elevated BMI in boys ranged from 16.76 to 22.73, while the corresponding values in girls ranged from 16.38 to 20.57. Conclusion: MUAC may be used as a simple indicator of overweight/obesity in children, with reasonable accuracy in clinical settings.

음성의 변곡점 추출 및 전송에 기반한 가변 데이터율 음성 부호화 기법 (A Variable Data Rate Speech Coding Technique Based on the Inflection Point Detection of Speech)

  • 임병관
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.562-565
    • /
    • 2013
  • A new variable rate speech coding technique is proposed. The method is based on the observation that the speech signal approximately looks linear for a very short period of time. The information transmitted is the location and data value of inflection points. If the distance between the inflection points is large, the mid point location and its data value are also delivered. Thus, the encoder transmits both the location and the data value for the inflection samples, but the location only for the non-inflection points. The location information is expressed using one bit for each sample, 0 for non-inflection and 1 for inflection point. At the receiver, using the interpolation, the decoder estimates the untransmitted sample values for non-inflection locations from the received sample values for the inflection samples. With 50 % of computational cost of the existing CVSD delta modulation, the proposed method is expected to achieve the data rate of 36 to 38 kbps and the SNR of 10 to 13 dB.

칵핏 흡차음 성능 예측을 위한 Virtual SEA 의 활용 (Application of Virtual SEA for the Prediction of Acoustic Performance of Cockpit)

  • 정원태;고창성;박경환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.903-912
    • /
    • 2007
  • One of the crucial factors which determine the quality and the accuracy of SEA model is how subsystems are defined. Experimental SEA technique had been a unique way to divide entire systems accurately for mid-frequency range, until FEA based virtual FRF response technique, virtual SEA method presented. Virtaul SEA has been developed for predictive SEA tool in early design process. In this study, Modal analysis results from modified crash FE model is used for Statistical transfer matrix. Observation nodes on the cockpit are grouped by attractive substructuring method based on point to point transfer and correlation matrix. Complex cockpit structure is divided into subsystems by automatic substructuring. Comparison with experimental SEA results validates the application of Virtual SEA to cockpit.

  • PDF

이동질량과 크랙을 가진 단순지지 보의 동특성에 관한 연구 (A Study on the Dynamic Behavior of a Simply Supported Beam with Moving Masses and Cracks)

  • 윤한익;손인수;조정래
    • 한국해양공학회지
    • /
    • 제17권6호
    • /
    • pp.47-52
    • /
    • 2003
  • To determine the effect of transverse open crack on the dynamic behavior of simply-supported Euler-Bernoulli beam with the moving masses, an iterative modal analysis approach is developed. The influence of depth and position of the crack in the beam, on the dynamic behavior of the simply supported beam system, have been studied by numerical method. The cracked section is represented by a local flexibility matrix, connecting two undamaged beam segments that is, the crack is modeled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section, and is derived by applying a fundamental fracture mechanics theory. As the depth of the crack is increased, the mid-span deflection of the simply-supported beam, with the moving mass, is increased. The crack is positioned in the middle point of the pipe, and the mid-span defection of the simply-supported pipe represents maximum deflection.

The Simulation of Notch Length on the Stress Distribution in Lap Zone of Single Lap Joint with a Centered Notch

  • Yan, Zhanmou;You, Min;Yi, Xiaosu;Zheng, Xiaoling
    • 접착 및 계면
    • /
    • 제7권4호
    • /
    • pp.18-23
    • /
    • 2006
  • The influence of the notch length on the stress distribution of mid-bondline and adherend was investigated using elasto-plastic finite element method. The results from the simulation showed that peak stress of mid-bondline decreased markedly as adherend with notch in the middle of lap zone, and the stress in the middle of joint with low stress originally increased evidently. All the peak stresses decreased firstly and increased again as the length of notch increased. The relative higher peak stress appeared at the point near the notch of adherend where might be failed previously during the loading procedure.

  • PDF