• Title/Summary/Keyword: microwave studio

Search Result 73, Processing Time 0.02 seconds

Analysis of Surface Plasmon Resonance on Periodic Metal Hole Array by Diffraction Orders

  • Hwang, Jeong-U;Yun, Su-Jin;Gang, Sang-U;No, Sam-Gyu;Lee, Sang-Jun;Urbas, Augustine;Ku, Zahyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.176-177
    • /
    • 2013
  • Surface plasmon polaritons (SPPs) have attracted the attention of scientists and engineers involved in a wide area of research, microscopy, diagnostics and sensing. SPPs are waves that propagate along the surface of a conductor, usually metals. These are essentially light waves that are trapped on the surface because of their interaction with the free electrons of conductor. In this interaction, the free electrons respond collectively by oscillating in resonance with the light wave. The resonant interaction between the surface charge oscillation and the electromagnetic field of the light constitutes the SPPs and gives rise to its unique properties. In this papers, we studied theoretical and experimental extraordinary transmittance (T) and reflectance (R) of 2 dimensional metal hole array (2D-MHA) on GaAs in consideration of the diffraction orders. The 2d-MHAs was fabricated using ultra-violet photolithography, electron-beam evaporation and standard lift-off process with pitches ranging from 1.8 to $3.2{\mu}m$ and diameter of half of pitch, and was deposited 5-nm thick layer of titanium (Ti) as an adhesion layer and 50-nm thick layer of gold (Au) on the semiinsulating GaAs substrate. We employed both the commercial software (CST Microwave Studio: Computer Simulation Technology GmbH, Darmstadt, Germany) based on a finite integration technique (FIT) and a rigorous coupled wave analysis (RCWA) to calculate transmittance and reflectance. The transmittance was measured at a normal incident, and the reflectance was measured at variable incident angle of range between $30^{\circ}{\sim}80^{\circ}$ with a Nicolet Fourier transmission infrared (FTIR) spectrometer with a KBr beam splitter and a MCT detector. For MHAs of pitch (P), the peaks ${\lambda}$ max in the normal incidence transmittance spectra can be indentified approximately from SP dispersion relation, that is frequency-dependent SP wave vector (ksp). Shown in Fig. 1 is the transmission of P=2.2 um sample at normal incidence. We attribute the observation to be a result of FTIR system may be able to collect the transmitted light with higher diffraction order than 0th order. This is confirmed by calculations: for the MHAs, diffraction efficiency in (0, 0) diffracted orders is lower than in the (${\pm}x$, ${\pm}y$) diffracted orders. To further investigate the result, we calculated the angular dependent transmission of P=2.2 um sample (Fig. 2). The incident angle varies from 30o to 70o with a 10o increment. We also found the splitting character on reflectance measurement. The splitting effect is considered a results of SPPs assisted diffraction process by oblique incidence.

  • PDF

A study on the Enhancement of Gain and Axial Ratio Bandwidth of the Multilayer CP-DRA (다층 CP-DRA의 이득 및 축비대역폭 증대에 관한 연구)

  • Lee, Ho-Sang;Jo, Dong-Ki;Jung, Young-Ho;Kim, Cheol-Bok;Son, Ho-Cheol;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.7
    • /
    • pp.52-60
    • /
    • 2009
  • In this pater, a CP-DRA(Circularly Polarized Dielectric Resonator Antenna) using cross-slot-feed is studied to enhance the gain and axial ratio bandwidth. First, a single layer CP-DRA is studied as a reference for comparison. Then a new type of multilayer CP-DRA is proposed to enhance the gain and axial ratio bandwidth. In consideration of the antenna gain enhancement, the spacing between the elements of the multilayer CP-DRA is examined through analysis of the radiation performance of a 2$\times$2 planar amy of DRAs with a spacing of 0.7$\lambda_0$ and 1.2$\lambda_0$ using CST Microwave Studio. The measured result shows that the gain and bandwidth of the multilayer structure is approximately twice that of the single layer one. In the case of the array antenna in which the spacing between multilayer CP-DRA element is 1.2$\lambda_0$, a grating lobe is reduced, in contrast to what we can expect from a conventional antenna array. The gain is 13.4dBi and axial ratio bandwidth is 0.8GHz.

Design and Fabrication of Dual Band Antenna for LTE / LTE-A for Broadband Mobile Communication System (광대역 이동통신 시스템을 위한 LTE/LTE-A용 이중대역 안테나 설계 및 제작)

  • Kang, Sung-Woon;Oh, Mal-Geun;Kim, Kab-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.442-448
    • /
    • 2018
  • In this paper, a microstrip antenna for LTE / LTE-A is designed and fabricated for a broadband mobile communication system. The proposed antenna is designed to have the characteristics of using FR-4 (er = 4.3), size of $40mm{\times}50mm$, and LTE / LTE-A frequency bands of 2.3 GHz and 2.5 GHz. 2014, and the simulation result shows that the gain is 2.391 dBi at 2.3 GHz and 2.566 dBi at 2.5 GHz. The S-parameter also showed a result of less than -10 dB (WSWR 2: 1) in the desired frequency band. The broadband mobile communication antenna has been miniaturized, high performance, and light weight, and an excellent and low cost system is continuously being developed, and a broadband mobile communication system is used by many people. Since LTE / LTE-A technology has been proposed according to the development of system and demand, it is expected that many users will design and manufacture antennas satisfying the above conditions and apply the applied technology.