• Title/Summary/Keyword: microwave studio

Search Result 73, Processing Time 0.027 seconds

UWB/Bluetooth for a High Speed Wireless Communication Network Dual Band Microstrip Antenna Design (해상 고속 무선 통신망을 위한 UWB/Bluetooth용 이중대역 마이크로스트립 안테나 설계)

  • Oh, Mal-Geun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.960-966
    • /
    • 2018
  • Communication antennas used at sea have been developed remarkably. However, the speed of this development is insufficient when compared with user demands. Therefore, we developed an antenna for UWB/Bluetooth that operates on 3 [GHz] and 5.72 [GHz] bands in order to use the high-speed communication network system which improved antenna miniaturization, gain and radiation patterns. To improve bandwidth, a microstrip patch antenna was selected and CST Microwave Studio 2014 program was used. Through the program, we calculated the slot width, length, transmission line width, etc. using a theoretical formula at each step. These figures were checked through simulation to see if they meet production standards. UWB for high-speed wireless communication for short-range communication at sea, Bluetooth for exchanging information at a short distance by connecting each device, and corresponding technology can be easily utilized.

Design of Dual Band Antenna for UWB / WAS for Wireless Local Area Communication (무선 근거리 통신을 위한 UWB/WAS용 이중대역 안테나 설계)

  • Kim, Gyeong-rok;Oh, Mal-geun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.522-525
    • /
    • 2018
  • In this paper, we design a UWB / WAS microstrip antenna for wireless local high - speed communication. The substrate of the proposed antenna is FR-4 (er = 4.3) and its size is $30[mm]{\times}30[mm]$. It is designed to have characteristics that can be used in the frequency bands of 3.5 [GHz] and 5.2 [GHz], which are UWB / WAS frequency bands. The simulation was performed using CST Microwave Studio 2014. Simulation results show that the gain is 1.592 [dBi] at 3.5 [GHz] and 2.210 [dBi] at 5.2 [GHz]. The S-parameter also showed a result of less than -10 [dB] (WSWR 2: 1) in the desired frequency band. Microstrip antennas have been miniaturized, high performance, and light weight, and excellent and low cost systems are continuously being developed. In addition, many people use wireless local area network systems used in homes, companies, and public facilities. Since the UWB / WAS technology is proposed according to the development of the system and the demand increase, the antenna that satisfies the above conditions will be designed and the technology applicable to the system will be used more conveniently.

  • PDF

Conception and Modeling of a Novel Small Cubic Antenna Design for WSN

  • Gahgouh Salem;Ragad Hedi;Gharsallah Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.53-58
    • /
    • 2024
  • This paper presents a novel miniaturized 3-D cubic antenna for use in wireless sensor network (WSN) application. The geometry of this antenna is designed as a cube including a meander dipole antenna. A truly omnidirectional pattern is produced by this antenna in both E-plane and H-plane, which allows for non-intermittent communication that is orientation independent. The operating frequency lies in the ISM band (centered in 2.45 GHz). The dimensions of this ultra-compact cubic antenna are 1.25*1.12*1cm3 which features a length dimension λ/11. The coefficient which presents the overall antenna structure is Ka=0.44. The cubic shape of the antenna is allowing for smart packaging, as sensor equipment may be easily integrated into the cube hallow interior. The major constraint of WSN is the energy consumption. The power consumption of radio communication unit is relatively high. So it is necessary to design an antenna which improves the energy efficiency. The parameters considered in this work are the resonant frequency, return loss, efficiency, bandwidth, radiation pattern, gain and the electromagnetic field of the proposed antenna. The specificity of this geometry is that its size is relatively small with an excellent gain and efficiency compared to previously structures (reported in the literature). All results of the simulations were performed by CST Microwave Studio simulation software and validated with HFSS. We used Advanced Design System (ADS) to validate the equivalent scheme of our conception. Input here the part of summary.

Design of a Rectangular Loop Array Antenna for Beam Scanning (빔 조향이 가능한 직사각형 루프 배열 안테나의 설계)

  • Koo, Han-Ni;Han, In-Hee;Kim, Dong-Seok;Kim, Chan-Hong;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.922-929
    • /
    • 2007
  • In this paper, a rectangular loop array antenna for beam scanning is designed. A program using RWG MoM(Rao Wilton Glisson Method of Moment) is developed for SEP(Scan Element Pattern) theoretically. Simulation results obtained by using a commercial software tool, MWS are compared with the MoM results to confirm the validity of the program. Also these results are compared with the measured ones for the case of an $8{\times}5$ subarray. The fabricated $8{\times}5$ subarray showed a flat gain characteristic in the elevation scan range of ${\pm}45^{\circ}$ in the E-plane.

Novel Tunable Peace-Logo Planar Metamaterial Unit-Cell for Millimeter-Wave Applications

  • Khajeh-Khalili, Farzad;Honarvar, Mohammad Amin
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.389-395
    • /
    • 2018
  • A novel class of planar metamaterial unit-cells consisting of a peace logo pattern is presented. A significant advantage of the proposed peace-logo planar metamaterial (PLPM) unit-cell over existing designs is its tunability, simplicity, and compatibility with microstrip structures. The theoretical analysis is founded on the famous transmission-line theory for the metamaterial concept. Then, the tunable dual-band two-sided PLPM (TSPLPM) unit-cell is designed by printing a similar PLPM pattern at the bottom of the substrate. The influence of the bottom PLPM pattern on the resonance frequencies of the unit-cell was analyzed by performing numerical simulations using CST Microwave Studio 2017 and HFSSv15 simulators. The results of the numerical simulations demonstrated that the proposed TSPLPM has the ability to control the resonance frequencies over 50 GHz-75 GHz for millimeter-wave applications.

Simulation and Measurement of Characteristic in 450 mm CCP Plasma Source

  • Park, Gi-Jeong;Seo, Sang-Hun;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.508-508
    • /
    • 2012
  • CST microwave studio is used to simulate the plasma profile of the 450mm CCP source. Standing wave effect becomes important at the high frequency as the electrode radius increases. To solve plasma non-uniformity problem, we designed multi electrode chamber to decreasing standing wave effect. Simulation showed the ratio of input power of each electrode is related with electric field strength. The multi electrode was constructed and measured by 2D probe arrays using floating harmonic method. Uniformity of 450 mm CCP was changed by the ratio of input power of each electrode. We described this dependence with circuit model.

  • PDF

Design and Implementation of a Slot Antenna with Bazooka Balun for PCS Repeater (Bazooka balun을 이용한 PCS 중계기용 슬롯 안테나의 설계 및 구현)

  • Choi, Won-Jun;Kim, Che-Young;Jang, Byung-Chan;Park, Jeung-Keun
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.105-106
    • /
    • 2007
  • A slot antenna with bazooka balun is designed and implemented for PCS repeater. The proposed antenna improved the return loss and radiation pattern of the slot antenna as combining with the bazooka balun. The antenna was designed by using 3D simulations program, MWS (Microwave Studio). The test result of the slot antenna shows that the return loss is under -10 [dB] for all frequency bands of interests in PCS and maximum gain is about 5.59 [dBi]. And the antenna also shows omni-directional radiation pattern.

  • PDF

A Design and Analysis of the Microstrip Array Patch Antenna with Resonant frequency of 5.8GHz (5.8GHz 1 ${\times}$ 4 Array Microstrip Antenna의 설계와 그 특성에 관한 연구)

  • Cho, Young-Kyun;Kim, Hyeong-Seok;Chung, Tae-Kyung;Kim, Ho-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1993-1995
    • /
    • 2003
  • In this paper, a Dolph-Tschebyscheff type Microstrip array patch Antenna was designed and simulated with a commercial tools. Then we fabricated an Antenna and took a measurement of the radiation pattern of the Antenna in the Anechoic Chamber room. Despite of the same case, each simulation using commercial tools showed some different results. The simulation using the Microwave Studio gave more desirable result than the ADS. We found the error of the progress of production.

  • PDF

Cavity-backed Two-arm Spiral Antenna with a Ring-shaped Absorber for Partial Discharge Diagnosis

  • Kim, Han-Byul;Hwang, Keum-Cheol;Kim, Hyeong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.856-862
    • /
    • 2013
  • A cavity-backed two-arm spiral antenna for partial discharge diagnosis is presented. The proposed antenna consists of a two-arm Archimedean spiral, a tapered microstrip balun as spiral antenna feed, and a ring-shaped absorber-loaded cavity. The Archimedean spiral antenna is designed for the operating frequency band of 0.3 GHz to 1.5 GHz and fed by the tapered microstrip balun. The cavity is utilized to transform the bidirectional beam into a unidirectional beam, thereby enhancing gain. The ring-shaped absorber is stacked in the cavity to reduce the reflected waves from the cavity wall. The proposed antenna is designed and simulated using CST Microwave Studio. A prototype of the proposed antenna is likewise fabricated and tested. The measured radiation patterns are directional to the positive z-axis, and the measured peak gain is 8.13 dBi at a frequency of 1.1 GHz.

LTE / WiMAX Dual Band Antenna Design for Ultra-wideband Communications (초광대역 통신용 LTE/WiMAX 이중대역 안테나 설계)

  • Kim, Gyeong-Rok;Kang, Sung-Woon;Hong, Yong-Pyo;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.441-444
    • /
    • 2018
  • In this paper, a microstrip antenna for LTE / WiMAX is designed for UWB communication. The proposed antenna is designed for FR-4 (er = 4.3), 29[mm] x 45[mm], and can be used in the LTE frequency band of 1.82[GHz] and the WiMAX frequency band of 3.5[GHz]. Studio 2014 was used. The simulation results show 1.785[dB] at 1.82[GHz] and 1.720[dB] at 3.5[GHz]. S-parameters were also found to be less than -10dB (WSWR2: 1) in the desired frequency band. In order to achieve broadband, miniaturization, low cost and low loss, Width, length, width of transmission line, etc. were calculated. Therefore, it is considered that the applicable antenna can be applied satisfying the desired condition.

  • PDF