• Title/Summary/Keyword: microwave absorber

Search Result 93, Processing Time 0.026 seconds

Study on Development of High Performance Microwave Absorber Using Natural Lacquer Binder (옻칠을 소재로한 고성능 전파흡수체의 개발에 관한 연구)

  • 김동일;최동한;구동우;김도연;옥승민;양은정;김보영
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.53-57
    • /
    • 2002
  • In this paper, we explain new EM(electromagnetic) wave absorber that mixed NC (Natural Ceramics) and Ferrite with NL(Natural Lacquer). At first, a mixed NC and Ferrite(NC : F = (0.1~30)wt% : (99.9~70)wt%) bum at 95$0^{\circ}C$~125$0^{\circ}C$. And then, it is comminuted and injected into NL((NC+F) . NL = (30~80)wt% (70~20)wt%), finally we made Ferrite-NL EM wave absorber. Generally, conventional labor Ferrite covers only 500 MHz to 10 GHz under tolerance limits of 2 to 6 dB in absorption, and Ferrite-NL is over 8 ~ 14 dB. However, NCFerrite-NL huts superior absorption ability. It is over 16 to 19 dB through 500 MHz to 10 GHz.

  • PDF

Microwave Absorbing Structure Using Semiconductive Fiber Reinforced Composite (반도체 섬유 강화 복합재료를 이용한 전자파 흡수 구조)

  • Choi, Jae-Hun;Nam, Young-Woo;Kim, Chun-Gon;Lee, Won-Jun
    • Composites Research
    • /
    • v.29 no.3
    • /
    • pp.98-103
    • /
    • 2016
  • This paper deals with the fabrication and verification of the microwave absorbing structure using semiconductive fiber reinforced composite. Two kinds of fiber were used to fabricate composites. Electromagnetic properties of the composites were measured by freespace measurement system over X-band. Two single slab absorbers and a double slab absorber were designed by thickness optimization method. Single slab absorbers did not show good microwave absorption performance because the permittivity is away from non-reflection curve. Double slab absorber complemented the limitations on single slab absorber and it showed good microwave absorption performance. Double slab absorber showed -43.9 dB loss near 10 GHz.

A study on Improving Intermodulaton Signal of the RF Power Amplifier Using Microwave Absorber (전파흡수체에 의한 전력증폭기의 혼변조 신호의 개선 효과에 관한 연구)

  • 양승국;전중성;김민정;예병덕;김동일
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.92-96
    • /
    • 2003
  • In this paper, 30 W power Amplifier for IMT-2000 repeater was developed gain flatness and the third IMD (Intermodulation distortion) by Microwave absorber. The absorption ability of the absorber is measured up to -10 ㏈ and -4 ㏈ at 3.6 ㎓, 2.3 ㎓ band respectively. Non using absorber power amplifier has the gain over 57 ㏈, the gain flatness of ${\pm}$0.33 ㏈ and the third IMD of 27 ㏈c at 33.3 W output. Otherwise, using absorber power amplifier has the gain over 58㏈, the gain flatness of less than ${\pm}$0.9, the third IMD over 29 ㏈c at the same output power. As a result, the characteristic of the different type show improvement of 1 ㏈ in gain, 0.3 ㏈ in Gain flatness and 1.77 ㏈c in IMD.

  • PDF

Fabrication and Properties of Thin Microwave Absorbers of Ferroelectric Materials Used in Mobile Telecommunication Frequency Bands (강유전체를 이용한 이동통신주파수 대역용 박형 전파흡수체의 제조 및 특성)

  • Lee, Yeong-Jong;Yun, Yeo-Chun;Kim, Seong-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.2
    • /
    • pp.160-165
    • /
    • 2002
  • High-frequency dielectric and microwave absorbing properties have been investigated in ferroelectric materials (BaTiO$_3$(BT), (1-x)Pb$Mg_{\frac{1}{3}}Nb_{\frac{2}{3}}$)O$_3$-xPbTiO$_3$(PMN-PT), (1-x)Pb$Mg_{\frac{1}{3}}Nb_{\frac{2}{3}}$O$_3$-xPb(Zn_{\frac{1}{3}}Nb_{\frac{2}{3}}$)O$_3$(PMN-PZN) for the aim of thin microwave absorbers in the frequency range of mobile telecommunication. The specimenns are prepared by conventional ceramic processing and complex permittivity has been measured by transmission/reflection method. The ferroelectric materials show high dielectric constant and dielectric loss in the microwave range and their domiant loss mechanism is considered to be domain wall relaxation. The microwave absorbance of BT 0.9PMN-0.1PT, and 0.8PMN-0.2PZN specimen (determined at 2) are found to be 99.5% (at a thickness of 4.5 mm), 50% (2.5 mm), and 30% (2.5 mm), respectively. It is suggested that PMN-PT or PMN-PZN ferroelectrics are good candidate materials for the spacer of λ/4 absorber. The use of ferroelectric materials is effective in reducing the thickness of absorber with their advantage of high dielectric constant.

The Matching Condition Design of Three Kinds of Ferrite/Rubber Composite Microwave Absorber according to the Constitutional Rate (조성비에 따른 3종 페라이트/고무 복합형 전파흡수체의 정합조건 설계)

  • 유영준;양윤석;전홍배;김철한;김한근;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.247-250
    • /
    • 1999
  • In this study, three kinds of Mn-Zn ferrite/Ni-Zn ferrite/$Ni_2Y$ ferroxplana prepared by the coprecipitation method was compounded with silicon rubber, and thereafter made ring-type specimens with various compositional ratio. The material constant of ferrite/rubber composite absorbers was obtaibed by the 2-port method. The material constants of the ferrite/rubber composite absorber with various compositional ratio of three kinds of ferrite were used to design the matching frequency and thickness with the impedance matching map. We were able to predict the matching condition from the design method.

  • PDF

A Study on Measuring Technique of Electromagnetic Wave Absorbing Characteristics of Microwave Absorbers (전파흡수체의 전파흡수특성 측정기법에 관한 연구)

  • 김동일;안영섭;정세모
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.1
    • /
    • pp.10-19
    • /
    • 1993
  • As a method to measure the absorbing characteristics of microwave absorber, the various microwave measuring method can be used fundamentally. There is, however, a big problem in measuring errors, since the wavelength of microwave such as used for radar is very short. Therefore, this research aimed to design and fabricate a converting adaptor of 20mm .PHI. coaxial tube from a Type - N connector to $20mm\phi$ coaxial tube and to use it for evaluating absorption characteristics of microwave absorber. Furthermore, the measurements of absorbing characteristics and material constants have been performed and reviewed, which were carried out by using the coaxial tube and by using rectangular waveguide, res- pectively. As a result, the validity of the proposed measuring method has been confirmed.

  • PDF

A Study on the Microwave Absorber Properties of Ni-Cu-Zn Ferrites Composite (Ni-Cu-Zn Ferrite의 복합형 전파흡수체 특성 연구)

  • Min, Eui-Hong;Kim, Moon-Suk;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.238-241
    • /
    • 2007
  • Ni-Cu-Zn ferrites were prepared by the co-precipitation. Physical properties and Microwave absorbing properties were investigated in Ni-Cu-Zn ferrite for the aim of microwave absorbers. From the analysis of X-ray diffraction patterns, we can see that all the particles have only a single phase spinel structure. The loss factor was maximum at sintering temperature $1100^{\circ}C$. The initial permeability of sintered ferrite obtained was an average of 50. We found that the $(Ni_{0.7}Cu_{0.2}Zn_{0.1}O)_{1.02}(Fe_2O_3)_{0.98}$ can be used in ferrite rubber composite microwave absorber when sintering temperature at $1100^{\circ}C$.

THE COMPLEX PERMEABILITY AND MATCHING FREQUENCY OF FERRITE MICROWAVE ABSORBER

  • Shin, Jae-Young;Oh, Jae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.800-804
    • /
    • 1995
  • The complex permeability dispersions and the microwave absorbing phenomena are investigated in ferrite microwave absorber. The complex permeability of NiZn ferrite, NiZnCo ferrite, and Y-type hexagonal ferrite were measured in 200MHz-14GHz range. Two types of resonances, the domain wall and the spin rotational resonance, were observed. With a ferrite particle with a diameter of about $1\;\mu\textrm{m}$, only spin rotational resonance were observed. The theoretical matching frequency is determined by plotting the measured complex permeability locus on the impedance matching solution map. One or two impedance matching phenomena are observed in the ferrite absorbers according to their complex permeability loci on the impedance matching solution map. The first matching frequency, found in the ferrite-rubber composites, which was higher than that of spin rotational resonance, increased with spin rotational resonance frequency.

  • PDF

Two-Layered Microwave Absorber of Ferrite and Carbon Fiber Composite Substrate

  • Han-Shin Cho;Sung-Soo Kim
    • Journal of Magnetics
    • /
    • v.3 no.2
    • /
    • pp.64-67
    • /
    • 1998
  • Microwave absorbing properties of ferrite-epoxy composite (absorbing layer) attached on the carbon fiber polymer composite (reflective substrate) are analyzed on the basis of wave propagation theory. A modified equation for wave-impedance-matching at the front surface of absorbing layer including the effect of electrical properties of the quasi-conducting substrate is proposed. Based on this analysis, the frequency and layer dimension that produce zero-reflection can be estimated from the intrinsic material properties of the obsorbing layer and the substrate. It is demonstrated that the microwave reflectivity of carbon fiber composite has a strong influence on the microwave absorbance of front magnetic layer.

  • PDF

Design of Ferrite Composite Microwave Absorber (복합 Ferrite 전파흡수체의 설계방안)

  • 신재영;오재희
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.11-16
    • /
    • 1994
  • The impedance matching solution map is not a sufficient method for designing the broad-band absorber because of its difficulty to get numerical data about practical band-width. Therefore, we develope a new method to design the broad-band absorber. The complex permeability limits, which is necessary for designing the broad-band absorber in C-X band (4 GHz~12.4 GHz) were investigated and application was also examined. The complex permeability limits represent the frequency dependence of the complex permeability at a practical frequency band. These complex permeability limits can be used effectively to design broad-band single-layered absorber because they offer numerical data about the band-width in the case of various dielectric loss tangent, practical frequency bands and permitted reflection losses of an absorber.

  • PDF