• 제목/요약/키워드: microvibration

검색결과 24건 처리시간 0.025초

첨단기술산업 시설물의 미진동제어를 위한 스마트 면진플랫폼의 적용 (Application of Smart Isolation Platform for Microvibration Control of High-Tech Industry Facilities)

  • 김현수;강주원;김영식
    • 한국공간구조학회논문집
    • /
    • 제14권2호
    • /
    • pp.87-94
    • /
    • 2014
  • In this study, a smart isolation platform has been developed for control of microvibration of high-technology facilities, such as semi-conductor plants and TFT-LCD plants. Previously, microvibration control performance of a smart base isolation system has been investigated. This study compared microvibration control performance of a smart isolation platform with that of conventional base isolation and fixed base. For this purpose, train-induced ground acceleration is used for time history analysis. An MR damper was used to compose a smart isolation platform. A fuzzy logic controller was used as a control algorithm and it was optimized by a multi-objective genetic algorithm. Numerical analysis shows that a smart isolation platform can effectively control microvibration of a high-technology facility subjected to train-induced excitation compared with other models.

Protective systems for high-technology facilities against microvibration and earthquake

  • Yang, Jann N.;Agrawal, Anil K.
    • Structural Engineering and Mechanics
    • /
    • 제10권6호
    • /
    • pp.561-575
    • /
    • 2000
  • Microvibration of high technology facilities, such as semiconductor plants and facilities with high precision equipments, due to nearby road and rail traffic has attracted considerable attention recently. In this paper, a preliminary study is conducted for the possible use of various protective systems and their performance for the reduction of microvibration. Simulation results indicate that passive base isolation systems, hybrid base isolation systems, passive floor isolation systems, and hybrid floor isolation systems are quite effective and practical. In particular, the performances of hybrid floor isolation systems are remarkable. Further, passive energy dissipation systems are not effective for the reduction of microvibration. Finally, the protections against both microvibration and earthquake are also investigated and presented.

철근콘크리트 슬래브의 진동 특성 (VIBRATION CHARACTERISTICS OF REINFORCED CONCRETE SLABS)

  • 변근주;노병철;방춘석;이호범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.218-223
    • /
    • 1992
  • Some aspects of the design procedures of reinforced concrete slabs concerning microvibration behavior have to be considered. In this study, a numerical algorithm for the analysis of slabs to withstand the microvibration effects is developed. First, the evaluation criteria for controlling the microvibration of slabs is given from the literature survey. Second, the human-induced load model is developed by the experimental results. Finally, the procedure for the analysis of reinforced concrete slabs, with particular emphasis to the slab subject to human-induced dynamic load, is developed by the finite element method and is then examined by using the slab model tests, In addition, the effects of elastic modulus, mass, shape of slab, and support conditions on the microvibration behavior of reinforced concrete slabs are analyzed. It is concluded that the developed analysis procedure showns in accecptable accuracy compared with the experiments and the analysis procedure cab be easily appkied to the practical microvibration problems.

  • PDF

다목적 유전자알고리즘을 이용한 첨단기술산업 시설물의 스마트 미진동제어 (Smart Microvibration Control of High-Tech Industry Facilities using Multi-Objective Genetic Algorithm)

  • 김현수;강주원;김영식
    • 한국공간구조학회논문집
    • /
    • 제13권2호
    • /
    • pp.37-45
    • /
    • 2013
  • Reduction of microvibration is regarded as important in high-technology facilities with high precision equipments. In this paper, smart control technology is used to improve the microvibration control performance. Mr damper is used to make a smart base isolation system amd fuzzy logic control algorithm is employed to appropriately control the MR damper. In order to develop optimal fuzzy control algorithm, a multi-objective genetic algorithm is used in this study. As an excitation, a train-induced ground acceleration is used for time history analysis and three-story example building structure is employed. Microvibration control performance of passive and smart base isolation systems have been investigated in this study. Numerical simulation results show that the multi-objective genetic algorithm can provide optimal fuzzy logic controllers for smart base isolation system and the smart control system can effectively reduce microvibration of a high-technology facility subjected to train-induced excitation.

인공위성의 미소 진동 영향성에 관한 해석 및 실험적 연구 (Analytical & Experimental Study on Microvibration Effects of Satellite)

  • 박지용;이대은;윤재산;한재흥
    • 한국소음진동공학회논문집
    • /
    • 제24권1호
    • /
    • pp.5-13
    • /
    • 2014
  • Number of components and payload systems installed in satellites were found to be exposed to various disturbance sources such as the reaction wheel assembly, the control moment gyro, coolers, and others. A micro-level of vibration can introduce jitter problems into an optical payload system and cause significant degradation of the image quality. Moreover, the prediction of on-orbit vibration effects on the performance of optical payloads during the development process is always important. However, analyzing interactions between subsystems and predicting the vibration level of the payloads is extremely difficult. Therefore, this paper describes the analytical and experimental approach to microvibration effects on satellite optical payload performance with integrated jitter analysis frame-work, microvibration emulator and satellite structure testbed.

자기부상방식의 능동 미세진동 제어시스템 (Active Microvibration Control System Using Maglev Actuator)

  • 이주훈;이세한;황돈하;김용주;최영규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2492-2494
    • /
    • 2004
  • A system, featuring the electromagnetic levitation actuator for control in the vertical direction, of active microvibration control was proposed. The main components of this system are a vibration isolation table with built-in acceleration sensors for detecting microvibration, electromagnetic levitation actuators with built-in permanent magnets and electromagnets, and a digital controller with high precision signal converters.

  • PDF

공기스프링과 압전작동기를 결합한 복합형 미진동 방진마운트 시스템 개발 (Development of a Hybrid Mount System Combined Airspring with Piezostack Actuator for Microvibration)

  • 문석준;정형조;신윤호;장동두;정종안;문영종
    • 한국소음진동공학회논문집
    • /
    • 제21권1호
    • /
    • pp.56-65
    • /
    • 2011
  • A new hybrid mount system is proposed for microvibration control in a high-tech factory. The mount consists of an airspring as a passive device and a piezostack actuator as an active device. The two devices are connected in series. Some numerical simulations and experimental tests are carried out to evaluate isolation performance of the mount system comprising of four proposed hybrid mounts. As a control logic, the specific algorithm is adopted for considering multiple target frequencies of excitation based on a Filtered-X LMS algorithm. The results are compared with isolation performance of the passive airspring mount system. It is confirmed that the proposed hybrid mount system has great performance on microvibration.

인공위성의 미소 진동 영향성에 관한 해석 및 실험적 연구 (Analytical & Experimental Study on Microvibration Effects of Satellite)

  • 박지용;이대은;윤재산;한재흥
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.533-539
    • /
    • 2013
  • Number of components and payload systems installed in satellites were found to be exposed to various disturbance sources such as the reaction wheel assembly, the control moment gyro, coolers, and others. A micro-level of vibration can introduce jitter problems into an optical payload system and cause significant degradation of the image quality. Moreover, the prediction of on-orbit vibration effects on the performance of optical payloads during the development process is always important. However, analyzing interactions between subsystems and predicting the vibration level of the payloads is extremely difficult. Therefore, this paper describes the analytical and experimental approach to microvibration effects on satellite optical payload performance with integrated jitter analysis framework, micro vibration emulator and satellite structure testbed.

  • PDF

Microvibration analysis of a cantilever configured reaction wheel assembly

  • Zhang, Zhe;Aglietti, Guglielmo S.;Ren, Weijia;Addari, Daniele
    • Advances in aircraft and spacecraft science
    • /
    • 제1권4호
    • /
    • pp.379-398
    • /
    • 2014
  • This article discusses the microvibration analysis of a cantilever configured reaction wheel assembly. Disturbances induced by the reaction wheel assembly were measured using a previously designed platform. Modelling strategies for the effect of damping are presented. Sine-sweep tests are performed and a method is developed to model harmonic excitations based on the corresponding test results. The often ignored broadband noise is modelled by removing spikes identified in the raw signal including a method of identifying spikes from energy variation and band-stop filter design. The validation of the reaction wheel disturbance model with full excitations (harmonics and broadband noise) is presented and flaws due to missing broadband noise in conventional reaction wheel assembly microvibration analysis are discussed.

열차진동하중을 받는 첨단시설물의 스마트 면진시스템을 이용한 미진동제어 (Microvibration Control of High Technology Facilities Subjected to Train-induced Excitation using Smart Base Isolation)

  • 김현수;강주원;김영식
    • 한국공간구조학회논문집
    • /
    • 제12권2호
    • /
    • pp.99-108
    • /
    • 2012
  • 정밀한 공정을 요구하는 반도체 및 TFT-LCD와 같은 첨단 기술산업 공장의 미진동 문제는 제품의 성능에 영향을 주는 주요한 인자로서 정밀기기 및 부품의 제조공정에 있어서 중요시 되어왔다. 본 논문에서는 이러한 첨단시설물의 미진동 문제를 해결하기 위하여 기초면진시스템의 미진동제어성능을 검토하였다. 이를 위하여, 기차에서 유발되는 인공지반운동을 생성하여 시간이력해석을 수행하였고 3층 예제구조물을 사용하였다. 수치해석을 통하여 수동 기초면진 및 스마트 면진시스템의 미진동제어성능을 고정기초구조물과 비교하였다. 그 결과 스마트 면진시스템이 미진동제어에 있어서 우수한 제어성능을 나타내는 것을 확인하였다.