• Title/Summary/Keyword: microstructure observation

Search Result 380, Processing Time 0.023 seconds

A Study on the Nano-Deformation Characteristics of Grain-Size Controlled Rheology Material Surfaces for Surface Crack Prediction (표면크랙 예측을 위한 결정립 제어 레오로지 소재 표면의 나노 변형특성에 관한 연구)

  • 윤성원;김현일;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.355-358
    • /
    • 2004
  • In this study, the deformation characteristics of grain-size controlled rheology materials surfaces were investigated as a part of the research on the surface crack prediction in semi-solid formed automobile components. The microstructure of rheology Al-Si alloys consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary region of semi-solid aluminum alloys (356 alloy and 319 alloy) were investigated through the nanoindentation/scratch experiments and the AFM observation.

  • PDF

A Study on the Material Resistance Against Segregation of Cement Mortar in Water (수중에서 시멘트 모르타르의 재료분리저항성에 관한 연구)

  • 정민철;남기웅;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.941-948
    • /
    • 1994
  • An underwater grout on material resistance against segregation in water were studied by water soluble polymer (methyl cellulose and acrylic acid ester and styrene). The mechanical properties of the grout agents were investigated through the observation of the microstructure and application of fracture mechanic. When the soluble polymer MC+AAES added with 0.6 wt% to the underwater grout agents the compressive strength, flexural strength and Young's modulus were about 58 MPa, 10 MPa and 3.2 GPa respectively, and critical stress intensity was about 0.8 MNm-1.5. It can be considered that the strength improvement and fracture toughness increase may be due to the pore decrease and bonding force by material resistance against segregation in water.

  • PDF

Effects of Mold Temperature on the Weldline and Dimensional Stability of Injection-molded Parts (금형온도가 사출성형품의 웰드라인과 치수안정성에 미치는 영향에 관한 연구)

  • 김동학;이재원;김태완
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.172-176
    • /
    • 2003
  • In this paper, we studied the effects of mold temperature on the microstructure of injection molded parts. The weld line decreases in length and width as mold temperature increases. We investigated the dimensional stability of the parts made of two kinds of resin(polypropylene and polystyrene) by varying the mold temperature. As the mold temperature is high, both the shrinkage ratio and the thickness difference for the PS parts decreases. But the observation of PP parts shows a tendency to increase. The easiness of cavity filling and transcription of the mold texture is improved as the mold temperature is high.

  • PDF

A Study on Degradation Estimation of 2.25Cr-1Mo Steel Using Ultrasonic Lamb Wave (램파를 이용한 2.25Cr-lMo재의 열화평가에 관한 연구)

  • 이상용;박익근;박은수;권숙인;조윤호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.324-329
    • /
    • 2001
  • The destructive method is reliable and widely used for the estimation of material degradation but, it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials by nondestructive evaluation is strongly desired. In this paper, the use of guided wave was suggested for the evaluation of thermally damaged 2.25 Cr-lMo steel as an alternative way to compensate for limitations of fracture tests. The observation of microstructure variations of the material including carbide precipitation increase and spheroidization near grain boundary was conducted and the correlation with the guided wave features such as energy loss ratio and group velocity changes was investigated. Through this study, the feasibility of ultrasonic guided wave evaluation for thermally damaged materials was explored.

  • PDF

Characterization of Ferrous Metal Artifacts by Microstructure Observation (미세구조 관찰에 의한 철제금속유물의 특성화)

  • Huh, Wooyoung;Lee, Chul
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.316-320
    • /
    • 1998
  • An image analysis was used for the interpretation of microstructures of ferrous metal artifacts. For the purposes, various microstructural features such as average grain size, phase area, shape factor, and composition of the inclusions, were parameterized for the information about manufacturing techniques such as casting, heating and tempering. The carbon content was determined through the evaluation of the amount of pearlite phase. As the amount of pearlite phase increased the shape factor also increased. Grain size was relatively smaller in trans-section than in cross-section. The manufacturing direction was trans-sectional because the orientation of inclusions was elongated lengthwise. All inclusions was of silicate groups and the manufacturing temperature was estimated up to $1450^{\circ}C$.

  • PDF

Multiscale modeling of the anisotropic shock response of β-HMX molecular polycrystals

  • Zamiri, Amir R.;De, Suvranu
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.139-153
    • /
    • 2011
  • In this paper we develop a fully anisotropic pressure and temperature dependent model to investigate the effect of the microstructure on the shock response of ${\beta}$-HMX molecular single and polycrystals. This micromechanics-based model can account for crystal orientation as well as crystallographic twinning and slip during deformation and has been calibrated using existing gas gun data. We observe that due to the high degree of anisotropy of these polycrystals, certain orientations are more favorable for plastic deformation - and therefore defect and dislocation generation - than others. Loading along these directions results in highly localized deformation and temperature fields. This observation confirms that most of the temperature rise during high rates of loading is due to plastic deformation or dislocation pile up at microscale and not due to volumetric changes.

Microstructure and Properties of Nano-Sized Ni-Fe Alloy Dispersed Al2O3 Composites (Ni-Fe 합금입자 분산 Al2O3 나노복합재료의 미세조직 및 특성)

  • 남궁석;정재영;오승탁;이재성;이홍재;정영근
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.161-166
    • /
    • 2002
  • Processing and properties of $Al_2O_3$ composites with Ni-Fe content of 10 and 15 wt% were investigated. Homogeneous powder mixtures of $Al_2O_3$/Ni-Fe alloy were prepared by the solution-chemistry route using $Al_2O_3$, $Ni(NO_3)_2{\cdot}6H_2O$ and $Fe(NO_3)_3{\cdot}9H_2O$ powders. Microstructural observation of composite powder revealed that Ni-Fe alloy particles with a size of 20nm were homogeneously dispersed on $Al_2O_3$ powder surfaces. Hot-pressed composites showed enhanced fracture toughness and magnetic response. The properties are discussed based on the observed microstructural characteristics.

microstructure of ZnO varistors (ZnO 바리스터의 미세구조)

  • Lee, Sang-Seok;Park, Yong-Pil;Lee, Joon-Ung
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.359-362
    • /
    • 1988
  • In this papers, in order to decreased the ZnO varistor breakdown voltage, additives the $TiO_2$ with ZnO varistors. The effects of addition $TiO_2$ with ZnO varistor are discussed. Observation of ZnO varistor microstructures are photospectroscopy and SEM, and variation of phase are XRD analysis. Experimental results, the more increased the $TiO_2$ contents the more decreased the mean grain size of ZnO. Also, results of XRD analysis, the more increased the $TiO_2$ contents the more increased the spinel structures.

  • PDF

A Study on Deformation Behavior of the Grain-Size Controlled Rheology Material by Using Nanoindenter and AFM (나노인덴터와 원자력간 현미경을 이용한 결정립 제어 레오로지 소재의 변형거동에 관한 연구)

  • 윤성원;김정원;강충길
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.374-381
    • /
    • 2004
  • In this study, the deformation behavior of semi-solid Al-Si alloy was investigated by nanoindenter as a part of the research on the surface crack behavior in thixoformed automobile component. The microstructure of semi-solid Al-Si alloy consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary phase of semi-solid aluminium alloy were investigated through the nano-indentation experiments and the AFM observation. In addition, mechanical properties of each region were investigated and compared with each other.

The Effect of Initial Textures on Ridging in STS 430 Steel (STS 430 강판의 리징 현상에 미치는 초기집합조직의 영향)

  • Lee J. H.;Lee C. H.;Park S. H.;Huh Y. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.225-227
    • /
    • 2004
  • Recrystallization textures of ferritic stainless steel sheets of STS 430 were varied by means of different cold rolling procedures. The conventional normal rolling led to the evolution of strong through-thickness texture gradients in the final recrystallization texture, while the cross-rolling led to a decrease in texture gradients. Micro-texture observation by EBSD revealed that the formation of band-like orientation colonies formed close to the center layer was responsible for ridging. Modification of the recrystallization texture and microstructure by cross-rolling destroyed band-like orientation colonies and consequently reduced the ridging height.

  • PDF