• 제목/요약/키워드: microstructure hardness

Search Result 1,339, Processing Time 0.024 seconds

화염급냉 표면처리된 Cu-8.8Al-4.5Ni-4.5Fe 합금의 미세구조 분석 및 내마모성에 관한 연구 (Characterization of the Microstructure and the Wear Resistance of the Flame-Quenched Cu-8.8Al-4.5Ni-4.5Fe Alloy)

  • 이민구;홍성모;김광호;김경호;김흥회
    • 열처리공학회지
    • /
    • 제17권6호
    • /
    • pp.346-355
    • /
    • 2004
  • The flame quenching process has been employed to modify the surfaces of commercial marine propeller material, aluminum bronze alloy (Cu-8.8Al-5Ni-5Fe), and the microstructure, hardness and wear properties of the flame-quenched layers have been studied. The thermal history was accurately monitored during the process with respect to both the designed maximum surface temperature and holding time. The XRD and EDX analyses have shown that at temperatures above $T_{\beta}$, the microstructure consisting of ${\alpha}+{\kappa}$ phases changed into the ${\alpha}+{\beta}^{\prime}$ martensite due to an eutectoid reaction of ${\alpha}+{\kappa}{\rightarrow}{\beta}$ and a martensitic transformation of ${\beta}{\rightarrow}{\beta}^{\prime}$. The ${\beta}^{\prime}$ martensite phase formed showed a face-centered cubic (FCC) crystal structure with the typical twinned structure. The hardness of the flame-quenched layer having the ${\alpha}+{\beta}^{\prime}$ structure was similar to that of the ${\alpha}+{\kappa}$ structure and depended sensitively on the size and distribution of hard ${\kappa}$ and ${\beta}^{\prime}$ phases with depth from the surface. As a result of the sliding wear test, the wear resistance of the flame-quenched layer was markedly enhanced with the formation of the ${\beta}^{\prime}$ martensite.

마찰교반공정을 통한 강재의 개질 영역에서의 미세조직에 미치는 합금원소의 영향 (Effect of Alloy Elements on Microstructure of Modified Area via Friction Stir Process in Steel Materials)

  • 김상혁;이광진;우기도
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.370-375
    • /
    • 2015
  • In this study, to confirm the effect of alloying elements on the phase transformation and conditions of the friction stir process, we processed two materials, SS400 and SM45C steels, by a friction stir process (FSP) under various conditions. We analyzed the mechanical properties and microstructure of the friction stir processed zone of SS400 and SM45C steels processed under 400RPM - 100mm/min conditions. We detected no macro (tunnel defect) or micro (void, micro crack) defects in the specimens. The grain refinement in the specimens occurred by dynamic recrystallization and stirring. The microstructure at the friction stir processed zone of the SS400 specimen consisted of an ${\alpha}$-phase. On the other hand, the microstructure at the friction stir processed zone of the SM45 specimen consisted of an ${\alpha}$-phase, $Fe_3C$ and martensite due to a high cooling rate and high carbon content. Furthermore, the hardness and impact absorption energy of the friction stir processed zone were higher than those of base metals. The hardness and impact absorption energy of FSPed SM45C were higher than that of FSPed SS400. Our results confirmed the effect of alloying elements on the phase transformation and mechanical properties of the friction stir processed zone.

CP-Ti 분말로부터 스파크 플라즈마 소결한 타이타늄의 미세구조와 기계적 성질에 미치는 가압력의 영향 (Effect of Applied Pressure on Microstructure and Mechanical Properties for Spark Plasma Sintered Titanium from CP-Ti Powders)

  • 조경식;송인범;김재;오명훈;홍재근;박노광
    • 대한금속재료학회지
    • /
    • 제49권9호
    • /
    • pp.678-685
    • /
    • 2011
  • The aim of this study was to determine the effect of applied pressure and sintering temperature on the microstructure and mechanical properties for spark plasma sintering (SPS) from commercial pure titanium (CP-Ti) powders. Spark plasma sintering is a relatively new sintering technique in powder metallurgy which is capable of sintering metal and ceramic powers quickly to full density at a fairly low temperature due to its unique features. SPS of -200 mesh or -400 mesh CP-Ti powders was carried out in an $Ar+H_2$ mixed gas flowing atmosphere between $650^{\circ}C$ and $750^{\circ}C$ under 10 to 80 MPa pressure. When SPS was carried out at relatively low temperatures ($650^{\circ}C$ to $750^{\circ}C$), the high (>60 MPa) pressure had a marked effect on densification and grain growth suppression. The full density of titanium was achieved at temperatures and pressures above $700^{\circ}C$ and 60 MPa by spark plasma sintering. The crystalline phase and microstructure of titanium sintered up to $700^{\circ}C$ consisted of ${\alpha}$-Ti and equiaxed grains. Vickers hardness ranging from 293 to 362 Hv and strength ranging from 304 to 410 MPa were achieved for spark plasma sintered titanium.

AZ61-xPd (x = 0, 1 and 2 wt%) Mg합금의 미세조직 및 인장특성에 미치는 열처리의 영향 (Effect of Aging Treatment on the Microstructure and Tensile Properties of AZ61-xPd (x = 0, 1 and 2 wt%) Alloys)

  • 김상현;김병호;박경철;박용호;박익민
    • 대한금속재료학회지
    • /
    • 제50권10호
    • /
    • pp.711-720
    • /
    • 2012
  • In this study, the effect of aging treatment on the microstructure and tensile properties of AZ61-xPd (x = 0, 1 and 2 wt%) alloys were investigated. The microstructure of as-cast AZ61-xPd alloys mainly consisted of ${\alpha}-Mg$, $Mg_{17}Al_{12}$ and $Al_4Pd$ phases. After solution treatment, most of the $Mg_{17}Al_{12}$ phases were dissolved into the Mg matrix. Thereafter, $Mg_{17}Al_{12}$ phases were finely formed and distributed near thermally stable $Al_4Pd$ phases and inside the grains through aging treatment at $220^{\circ}C$ during 88 hours. With the aging at $220^{\circ}C$, the peak aged AZ61-xPd alloys showed higher hardness than as-cast and solution treated AZ61-xPd alloys. In particular, the AZ61-1Pd alloy was optimized due to refined $Mg_{17}Al_{12}$ and $Al_4Pd$ phases. Further, the peak aging time was reduced with increasing Pd addition (>1 wt%). Tensile strength was increased by Pd addition at $25^{\circ}C$, $150^{\circ}C$, both as-cast and peak aged AZ61-xPd alloys. After aging treatment, room and high temperature tensile strength were increased more than the as-cast specimens. The AZ61-1Pd alloy especially showed the largest strength increase range. Elongation was decreased with addition Pd at $25^{\circ}C$ and $150^{\circ}C$.

3D 프린팅으로 제작된 AlCrFeNi 고엔트로피 합금의 분말 입도에 따른 특성 분석 (A Study on Powder Size Dependence of Additive Manufactured AlCrFeNi HEA on Its Microstructure and Mechanical Properties)

  • 최종우;박혜진;강결찬;정민섭;오기태;홍성환;김현길;김기범
    • 한국분말재료학회지
    • /
    • 제29권1호
    • /
    • pp.22-27
    • /
    • 2022
  • Conventionally, metal materials are produced by subtractive manufacturing followed by melting. However, there has been an increasing interest in additive manufacturing, especially metal 3D printing technology, which is relatively inexpensive because of the absence of complicated processing steps. In this study, we focus on the effect of varying powder size on the synthesis quality, and suggest optimum process conditions for the preparation of AlCrFeNi high-entropy alloy powder. The SEM image of the as-fabricated specimens show countless, fine, as-synthesized powders. Furthermore, we have examined the phase and microstructure before and after 3D printing, and found that there are no noticeable changes in the phase or microstructure. However, it was determined that the larger the powder size, the better the Vickers hardness of the material. This study sheds light on the optimization of process conditions in the metal 3D printing field.

Effects of Alloying Element and Heat Treatment on Properties of Cu-Ti Alloys

  • Suk, Han-Gil;Hong, Hyun-Seon
    • 한국표면공학회지
    • /
    • 제42권5호
    • /
    • pp.246-249
    • /
    • 2009
  • Cu-Ti alloys with titanium in the range of 0.5-6.0 wt% were developed to evaluate the effect of the titanium content and heat treatment on microstructure, hardness, and electrical conductivity. The hardness of the Ti-added copper alloys generally increased with the increase in titanium content and hardening was effective up to the 2.5 wt%-Ti addition. Microstructural examination showed that the second phase of $Cu_4Ti$ started to precipitate out from the 3.0 wt% Ti-addition, and the precipitate size and volume fraction increased with further Ti addition. Aging of the present Cu-Ti alloys at $450^{\circ}C$ for 1 h increased the hardness; however, the further aging up to 10 h did not much change the hardness. In the present study, it was inferred that in optimal Ti addition and aging condition Cu-Ti alloy could have the hardness and electrical conductivity values which are comparable to those of commercial Cu-Be alloy.

A Study on the Corrosion and Degradation of Boiler Tubes Steel in Fossil Power Plant

  • Baik, Young Min;Jeong, Hee Don;Kweon, Young Gak
    • Corrosion Science and Technology
    • /
    • 제5권4호
    • /
    • pp.123-128
    • /
    • 2006
  • It was analyzed the causes of boiler tube rupture due to a degradation and corrosion on the boiler tubes in fossil power plant. The experiments were carried out among samples taken from the operating facilities. The result were analyzed based on experimental results from mechanical strength, microstructure observation, and hardness measurement in order to determine the cause of local rupture on boiler tubes. In general, 2.25Cr-1Mo steel generates carbides, it is coarsened, its ductility and strength abruptly decreased as degradation is in progress, In order to confirm this phenomenon, we observed changes of the mount of Cr and Mo of carbide by carrying out EDX chemical composition analysis. The amount of Cr and Mo in the degraded material or service exposed material gradually increased the amount of Mo but initially they were almost maintained at the same amount. Furthermore, we observed that the carbide become coarsened both in the grain and at the grain boundary. Tensile test was carried out to measure a material hardness and to recognize a drop-off of hardness. Overall result for tensile strength and hardness turned out to be lower than new material and mechanical strength and hardness was degraded as the material degradation was in progress.

텅스텐 특성에 대한 소결온도의 영향 (Effect on Mechanical Properties of Tungsten by Sintering Temperature)

  • 박광모;이상필;배동수;이진경
    • 한국산업융합학회 논문집
    • /
    • 제24권3호
    • /
    • pp.283-288
    • /
    • 2021
  • A tungsten material using a pressure sintering process and a titanium sintering additive was prepared to evaluate the microstructure, and mechanical properties of flexural strength and hardness. In addition, the reliability on each hardness data was evaluated by analyzing the distribution of the hardness of the tungsten material using the Weibull probability distribution. In particular, the optimal manufacturing conditions were analyzed by analyzing the correlation between the sintering temperature and the mechanical properties of the tungsten sintered body. Although the sintering density of the tungsten material was hardly changed up to 1700 ℃, but it was increased at 1800 ℃. The hardness of the tungsten sintered material increased as the sintering temperature increased, and in particular, the tungsten material sintered at 1800 ℃ showed a high hardness value of about 1790 Hv. It showed relatively excellent flexural strength at a sintering temperature of 1800 ℃.

Mg-Al 합금에서 불연속 석출물의 부피 분율에 의한 경도 및 열전도도의 변화 (Changes in Hardness and Thermal Conductivity with Volume Fraction of Discontinuous Precipitates in Mg-Al Alloy)

  • 전중환
    • 열처리공학회지
    • /
    • 제34권6호
    • /
    • pp.302-308
    • /
    • 2021
  • The aim of this study was to investigate the dependence of the hardness and thermal conductivity on the volume fraction of discontinuous precipitates (DPs) in the Mg-9.3%Al alloy with (α-(Mg)+DPs) dual phase structure. In order to obtain various DPs volume fractions, the alloy was solution-treated at 688 K for 24 h and then aged at 418 K for up to 144 h. The volume fraction of DPs increased from 0% to 63% with an increase in the aging time up to 72 h, over which, continuous precipitation was observed within the α-(Mg) grains. It is noticeable that the hardness and thermal conductivity of the alloy increased linearly with the volume fraction of DPs. The improved hardness and thermal conductivity with respect to volume fraction of DPs are closely associated with the higher hardness of the DPs with fine (α+β) lamellar structure and the lower Al concentration in the α phase layer of the DPs, respectively.

유동층 화학기상증착법으로 제조된 TRISO 피복입자의 ZrC 층 미세구조와 경도에 미치는 증착온도의 영향 (Effect of Deposition Temperature on Microstructure and Hardness of ZrC Coating Layers of TRISO-Coated Particles Fabricated by the FBCVD Method)

  • 고명진;김대종;김원주;조문성;윤순길;박지연
    • 한국세라믹학회지
    • /
    • 제50권1호
    • /
    • pp.37-42
    • /
    • 2013
  • Tristructural-isotropic (TRISO)-coated particles were fabricated by a fluidized-bed chemical vapor deposition (FBCVD) method for use in a very high temperature gas-cooled reactor (VHTR). ZrC as a constituent layer of TRISO coating layers was deposited by a chloride process using $ZrCl_4$ and $CH_4$ source gases in a temperature range of $1400^{\circ}C$ and $1550^{\circ}C$. The change in the microstructure of ZrC depending on the deposition temperature and its effect on the hardness were evaluated. As the deposition temperature increased to $1500^{\circ}C$, the grain size of the ZrC increased and the hardness of the ZrC decreased according to the Hall-Petch relationship. However, at $1550^{\circ}C$, the ZrC layer was highly non-stoichiometric and carbon-rich and did not obey the Hall-Petch relationship in spite of the decrease of the grain size. A considerable amount of pyrolytic carbon at the grain boundaries of the ZrC as well as coarse granular pyrolytic carbon were locally distributed in the ZrC layer deposited at $1550^{\circ}C$. Therefore, the hardness decreased largely due to the formation of a large amount of pyrolytic carbon in the ZrC layer.