• Title/Summary/Keyword: microstructure hardness

Search Result 1,339, Processing Time 0.021 seconds

Characterization of the Microstructure and the Wear Resistance of the Flame-Quenched Cu-8.8Al-4.5Ni-4.5Fe Alloy (화염급냉 표면처리된 Cu-8.8Al-4.5Ni-4.5Fe 합금의 미세구조 분석 및 내마모성에 관한 연구)

  • Lee, M.K.;Hong, S.M.;Kim, G.H.;Kim, K.H.;Kim, W.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.6
    • /
    • pp.346-355
    • /
    • 2004
  • The flame quenching process has been employed to modify the surfaces of commercial marine propeller material, aluminum bronze alloy (Cu-8.8Al-5Ni-5Fe), and the microstructure, hardness and wear properties of the flame-quenched layers have been studied. The thermal history was accurately monitored during the process with respect to both the designed maximum surface temperature and holding time. The XRD and EDX analyses have shown that at temperatures above $T_{\beta}$, the microstructure consisting of ${\alpha}+{\kappa}$ phases changed into the ${\alpha}+{\beta}^{\prime}$ martensite due to an eutectoid reaction of ${\alpha}+{\kappa}{\rightarrow}{\beta}$ and a martensitic transformation of ${\beta}{\rightarrow}{\beta}^{\prime}$. The ${\beta}^{\prime}$ martensite phase formed showed a face-centered cubic (FCC) crystal structure with the typical twinned structure. The hardness of the flame-quenched layer having the ${\alpha}+{\beta}^{\prime}$ structure was similar to that of the ${\alpha}+{\kappa}$ structure and depended sensitively on the size and distribution of hard ${\kappa}$ and ${\beta}^{\prime}$ phases with depth from the surface. As a result of the sliding wear test, the wear resistance of the flame-quenched layer was markedly enhanced with the formation of the ${\beta}^{\prime}$ martensite.

Effect of Alloy Elements on Microstructure of Modified Area via Friction Stir Process in Steel Materials (마찰교반공정을 통한 강재의 개질 영역에서의 미세조직에 미치는 합금원소의 영향)

  • Kim, Sang Hyuk;Lee, Kwang Jin;Woo, Kee Do
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.370-375
    • /
    • 2015
  • In this study, to confirm the effect of alloying elements on the phase transformation and conditions of the friction stir process, we processed two materials, SS400 and SM45C steels, by a friction stir process (FSP) under various conditions. We analyzed the mechanical properties and microstructure of the friction stir processed zone of SS400 and SM45C steels processed under 400RPM - 100mm/min conditions. We detected no macro (tunnel defect) or micro (void, micro crack) defects in the specimens. The grain refinement in the specimens occurred by dynamic recrystallization and stirring. The microstructure at the friction stir processed zone of the SS400 specimen consisted of an ${\alpha}$-phase. On the other hand, the microstructure at the friction stir processed zone of the SM45 specimen consisted of an ${\alpha}$-phase, $Fe_3C$ and martensite due to a high cooling rate and high carbon content. Furthermore, the hardness and impact absorption energy of the friction stir processed zone were higher than those of base metals. The hardness and impact absorption energy of FSPed SM45C were higher than that of FSPed SS400. Our results confirmed the effect of alloying elements on the phase transformation and mechanical properties of the friction stir processed zone.

Effect of Applied Pressure on Microstructure and Mechanical Properties for Spark Plasma Sintered Titanium from CP-Ti Powders (CP-Ti 분말로부터 스파크 플라즈마 소결한 타이타늄의 미세구조와 기계적 성질에 미치는 가압력의 영향)

  • Cho, Kyeong-Sik;Song, In-Beom;Kim, Jae;Oh, Myung-Hoon;Hong, Jae-Keun;Park, Nho-Kwang
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.678-685
    • /
    • 2011
  • The aim of this study was to determine the effect of applied pressure and sintering temperature on the microstructure and mechanical properties for spark plasma sintering (SPS) from commercial pure titanium (CP-Ti) powders. Spark plasma sintering is a relatively new sintering technique in powder metallurgy which is capable of sintering metal and ceramic powers quickly to full density at a fairly low temperature due to its unique features. SPS of -200 mesh or -400 mesh CP-Ti powders was carried out in an $Ar+H_2$ mixed gas flowing atmosphere between $650^{\circ}C$ and $750^{\circ}C$ under 10 to 80 MPa pressure. When SPS was carried out at relatively low temperatures ($650^{\circ}C$ to $750^{\circ}C$), the high (>60 MPa) pressure had a marked effect on densification and grain growth suppression. The full density of titanium was achieved at temperatures and pressures above $700^{\circ}C$ and 60 MPa by spark plasma sintering. The crystalline phase and microstructure of titanium sintered up to $700^{\circ}C$ consisted of ${\alpha}$-Ti and equiaxed grains. Vickers hardness ranging from 293 to 362 Hv and strength ranging from 304 to 410 MPa were achieved for spark plasma sintered titanium.

Effect of Aging Treatment on the Microstructure and Tensile Properties of AZ61-xPd (x = 0, 1 and 2 wt%) Alloys (AZ61-xPd (x = 0, 1 and 2 wt%) Mg합금의 미세조직 및 인장특성에 미치는 열처리의 영향)

  • Kim, Sang Hyun;Kim, Byeong Ho;Park, Kyung Chul;Park, Yong Ho;Park, Ik Min
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.711-720
    • /
    • 2012
  • In this study, the effect of aging treatment on the microstructure and tensile properties of AZ61-xPd (x = 0, 1 and 2 wt%) alloys were investigated. The microstructure of as-cast AZ61-xPd alloys mainly consisted of ${\alpha}-Mg$, $Mg_{17}Al_{12}$ and $Al_4Pd$ phases. After solution treatment, most of the $Mg_{17}Al_{12}$ phases were dissolved into the Mg matrix. Thereafter, $Mg_{17}Al_{12}$ phases were finely formed and distributed near thermally stable $Al_4Pd$ phases and inside the grains through aging treatment at $220^{\circ}C$ during 88 hours. With the aging at $220^{\circ}C$, the peak aged AZ61-xPd alloys showed higher hardness than as-cast and solution treated AZ61-xPd alloys. In particular, the AZ61-1Pd alloy was optimized due to refined $Mg_{17}Al_{12}$ and $Al_4Pd$ phases. Further, the peak aging time was reduced with increasing Pd addition (>1 wt%). Tensile strength was increased by Pd addition at $25^{\circ}C$, $150^{\circ}C$, both as-cast and peak aged AZ61-xPd alloys. After aging treatment, room and high temperature tensile strength were increased more than the as-cast specimens. The AZ61-1Pd alloy especially showed the largest strength increase range. Elongation was decreased with addition Pd at $25^{\circ}C$ and $150^{\circ}C$.

A Study on Powder Size Dependence of Additive Manufactured AlCrFeNi HEA on Its Microstructure and Mechanical Properties (3D 프린팅으로 제작된 AlCrFeNi 고엔트로피 합금의 분말 입도에 따른 특성 분석)

  • Choi, Jong Woo;Park, Hae Jin;Kang, Gyeol Chan;Jung, Min Seob;Oh, Ki Tae;Hong, Sung Hwan;Kim, Hyun Gil;Kim, Ki Buem
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.22-27
    • /
    • 2022
  • Conventionally, metal materials are produced by subtractive manufacturing followed by melting. However, there has been an increasing interest in additive manufacturing, especially metal 3D printing technology, which is relatively inexpensive because of the absence of complicated processing steps. In this study, we focus on the effect of varying powder size on the synthesis quality, and suggest optimum process conditions for the preparation of AlCrFeNi high-entropy alloy powder. The SEM image of the as-fabricated specimens show countless, fine, as-synthesized powders. Furthermore, we have examined the phase and microstructure before and after 3D printing, and found that there are no noticeable changes in the phase or microstructure. However, it was determined that the larger the powder size, the better the Vickers hardness of the material. This study sheds light on the optimization of process conditions in the metal 3D printing field.

Effects of Alloying Element and Heat Treatment on Properties of Cu-Ti Alloys

  • Suk, Han-Gil;Hong, Hyun-Seon
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.5
    • /
    • pp.246-249
    • /
    • 2009
  • Cu-Ti alloys with titanium in the range of 0.5-6.0 wt% were developed to evaluate the effect of the titanium content and heat treatment on microstructure, hardness, and electrical conductivity. The hardness of the Ti-added copper alloys generally increased with the increase in titanium content and hardening was effective up to the 2.5 wt%-Ti addition. Microstructural examination showed that the second phase of $Cu_4Ti$ started to precipitate out from the 3.0 wt% Ti-addition, and the precipitate size and volume fraction increased with further Ti addition. Aging of the present Cu-Ti alloys at $450^{\circ}C$ for 1 h increased the hardness; however, the further aging up to 10 h did not much change the hardness. In the present study, it was inferred that in optimal Ti addition and aging condition Cu-Ti alloy could have the hardness and electrical conductivity values which are comparable to those of commercial Cu-Be alloy.

A Study on the Corrosion and Degradation of Boiler Tubes Steel in Fossil Power Plant

  • Baik, Young Min;Jeong, Hee Don;Kweon, Young Gak
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.123-128
    • /
    • 2006
  • It was analyzed the causes of boiler tube rupture due to a degradation and corrosion on the boiler tubes in fossil power plant. The experiments were carried out among samples taken from the operating facilities. The result were analyzed based on experimental results from mechanical strength, microstructure observation, and hardness measurement in order to determine the cause of local rupture on boiler tubes. In general, 2.25Cr-1Mo steel generates carbides, it is coarsened, its ductility and strength abruptly decreased as degradation is in progress, In order to confirm this phenomenon, we observed changes of the mount of Cr and Mo of carbide by carrying out EDX chemical composition analysis. The amount of Cr and Mo in the degraded material or service exposed material gradually increased the amount of Mo but initially they were almost maintained at the same amount. Furthermore, we observed that the carbide become coarsened both in the grain and at the grain boundary. Tensile test was carried out to measure a material hardness and to recognize a drop-off of hardness. Overall result for tensile strength and hardness turned out to be lower than new material and mechanical strength and hardness was degraded as the material degradation was in progress.

Effect on Mechanical Properties of Tungsten by Sintering Temperature (텅스텐 특성에 대한 소결온도의 영향)

  • Park, Kwang-Mo;Lee, Sang-Pill;Bae, Dong-Su;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.283-288
    • /
    • 2021
  • A tungsten material using a pressure sintering process and a titanium sintering additive was prepared to evaluate the microstructure, and mechanical properties of flexural strength and hardness. In addition, the reliability on each hardness data was evaluated by analyzing the distribution of the hardness of the tungsten material using the Weibull probability distribution. In particular, the optimal manufacturing conditions were analyzed by analyzing the correlation between the sintering temperature and the mechanical properties of the tungsten sintered body. Although the sintering density of the tungsten material was hardly changed up to 1700 ℃, but it was increased at 1800 ℃. The hardness of the tungsten sintered material increased as the sintering temperature increased, and in particular, the tungsten material sintered at 1800 ℃ showed a high hardness value of about 1790 Hv. It showed relatively excellent flexural strength at a sintering temperature of 1800 ℃.

Changes in Hardness and Thermal Conductivity with Volume Fraction of Discontinuous Precipitates in Mg-Al Alloy (Mg-Al 합금에서 불연속 석출물의 부피 분율에 의한 경도 및 열전도도의 변화)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.6
    • /
    • pp.302-308
    • /
    • 2021
  • The aim of this study was to investigate the dependence of the hardness and thermal conductivity on the volume fraction of discontinuous precipitates (DPs) in the Mg-9.3%Al alloy with (α-(Mg)+DPs) dual phase structure. In order to obtain various DPs volume fractions, the alloy was solution-treated at 688 K for 24 h and then aged at 418 K for up to 144 h. The volume fraction of DPs increased from 0% to 63% with an increase in the aging time up to 72 h, over which, continuous precipitation was observed within the α-(Mg) grains. It is noticeable that the hardness and thermal conductivity of the alloy increased linearly with the volume fraction of DPs. The improved hardness and thermal conductivity with respect to volume fraction of DPs are closely associated with the higher hardness of the DPs with fine (α+β) lamellar structure and the lower Al concentration in the α phase layer of the DPs, respectively.

Effect of Deposition Temperature on Microstructure and Hardness of ZrC Coating Layers of TRISO-Coated Particles Fabricated by the FBCVD Method (유동층 화학기상증착법으로 제조된 TRISO 피복입자의 ZrC 층 미세구조와 경도에 미치는 증착온도의 영향)

  • Ko, Myung-Jin;Kim, Daejong;Kim, Weon-Ju;Cho, Moon Sung;Yoon, Soon Gil;Park, Ji Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • Tristructural-isotropic (TRISO)-coated particles were fabricated by a fluidized-bed chemical vapor deposition (FBCVD) method for use in a very high temperature gas-cooled reactor (VHTR). ZrC as a constituent layer of TRISO coating layers was deposited by a chloride process using $ZrCl_4$ and $CH_4$ source gases in a temperature range of $1400^{\circ}C$ and $1550^{\circ}C$. The change in the microstructure of ZrC depending on the deposition temperature and its effect on the hardness were evaluated. As the deposition temperature increased to $1500^{\circ}C$, the grain size of the ZrC increased and the hardness of the ZrC decreased according to the Hall-Petch relationship. However, at $1550^{\circ}C$, the ZrC layer was highly non-stoichiometric and carbon-rich and did not obey the Hall-Petch relationship in spite of the decrease of the grain size. A considerable amount of pyrolytic carbon at the grain boundaries of the ZrC as well as coarse granular pyrolytic carbon were locally distributed in the ZrC layer deposited at $1550^{\circ}C$. Therefore, the hardness decreased largely due to the formation of a large amount of pyrolytic carbon in the ZrC layer.