• Title/Summary/Keyword: microstructure hardness

Search Result 1,339, Processing Time 0.025 seconds

Effect of Transition Metal on Properties of SiC Electroconductive Ceramic Composites (SIC 도전성 세라믹 복합체의 특성에 미치는 천이금속의 영향)

  • 신용덕;오상수;주진영
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.7
    • /
    • pp.352-357
    • /
    • 2004
  • The composites were fabricated, respectively, using 61vol.% SiC - 39vol.% TiB$_2$ and using 61vo1.% SiC - 39vo1.% WC powders with the liquid forming additives of 12wt% $Al_2$O$_3$+Y$_2$O$_3$ by pressureless annealing at 180$0^{\circ}C$ for 4 hours. Reactions between SiC and transition metal TiB$_2$, WC were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H), TiB$_2$ and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phase on the SiC-TiB$_2$, and SiC(2H), WC and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phase on the SiC-WC composites. $\beta$\$\longrightarrow$$\alpha$-SiC phase transformation was ocurred on the SiC-TiB$_2$, but $\alpha$\$\longrightarrow$$\beta$-SiC reverse transformation was not occurred on the SiC-WC composites. The relative density, the vicker's hardness, the flexural strength and the fracture toughness showed respectively value of 96.2%, 13.34GPa, 310.19Mpa and 5.53Mpaㆍml/2 in SiC-WC composites. The electrical resistivity of the SiC-TiB$_2$ and the SiC-WC composites is all positive temperature coefficient resistance(PTCR) in the temperature ranges from $25^{\circ}C$ to 50$0^{\circ}C$. 2.64${\times}$10-2/$^{\circ}C$ of PTCR of SiC-WC was higher than 1.645${\times}$10-3/$^{\circ}C$ of SiC-TiB$_2$ composites.posites.

Comparison of PEO Coating Layer of AZ31 Alloy Surface according to EDTA Contained in Electrolytic Solution (전해 용액에 포함된 EDTA에 따른 AZ31 합금 표면의 PEO 코팅 층 비교)

  • Woo, Jin-Ju;Kim, Min-Soo;Koo, Bon-Heun
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.185-190
    • /
    • 2020
  • Titanium is widely used as an implant material due to its excellent biocompatibility, but has a problem due to high cost and high Young's modulus compared to bone. Magnesium alloy is attracting attention as a material to replace it. Magnesium alloy, like titanium, has excellent biocompatibility and has a Young's modulus similar to that of bone. However, there are corrosion resistance problems due to corrosion, and various surface treatment methods are being studied to solve them. In this study, the ceramic coating layer was grown on the surface of the AZ31 magnesium alloy in an electrolytic solution containing EDTA, and the properties of the formed coating were analyzed through SEM and XRD to analyze the microstructure and shape, and measured the micro hardness of the coating layer. Corrosion properties in the body were evaluated through a corrosion test in SBF solution, a component similar to blood plasma.

Characteristics of Mechanical Properties and Micro Structure according to High-Frequency Induction Heating Conditions in Roll Forming Process of a Sill Side Part (실사이드 부품의 롤포밍공정에서 고주파유도가열 부가조건에 따른 기계적 특성 및 미세조직 평가)

  • Kim, Kun-Young;Choy, Lee-Jon;Shin, Hyun-Il;Cho, Jun-Haeng;Lee, Chang-Hoon;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.87-94
    • /
    • 2017
  • Hot stamping processes are possible for tensile strength 1.4 GPa but the strength reduction is appeared from the cooling performance unbalance. And the strength of roll forming process is below than that of hot stamping process owing to using the steel which is lower strength of boron steel. In this study, We provide roll forming process asssisted high-frequency induction heating to solve the problem of conventional one. The experiments were carried out at under various sill side part conditions: high-frequency induction heating conditions of 15, 18, 21, 24, 27 and 30 kW. The high-frequency induction heating temperature was checked with Infrared camera and the sill side parts of mechanical properties and microstructure were measured. The heating temperature of high frequency induction was measured to max $850^{\circ}C$ under the coil power of 30 kW. The tensile strength was 1.5 GPa and hardness was 490 Hv. The martensite structure was discovered under coil power of 30 kW. The weight of steel material sill side having thickness 1.5 mm and the boron steel sill side having thickness 1.2 mm were compared to weight effect. The boron steel sill side reduced 11.5% compared to steel. Consequently, manufacturing process of 1.5 giga-grade's sill side part was successfully realized by the roll forming assisted high-frequency induction heating methods.

Effect of Controlled Atmosphere and Modified Atmosphere Storage on the Apparent Quality and Saponin Component of Fresh and Red Ginseng (CA 및 MA 저장이 수삼 및 홍삼의 외관품질 및 사포인 조성에 미치는 영향)

  • 전병선;성현순
    • Journal of Ginseng Research
    • /
    • v.19 no.1
    • /
    • pp.62-72
    • /
    • 1995
  • During the controlled atmosphere storage (CA), fresh ginseng showed good appearance in quality, and other deterioration of freshness was not observed until 12 weeks. On the other hand, MA storage had kept freshness only in treatment of 1 until 8 weeks. There was no significant difference between treated and non-treated sample with preservatives, and not treated sample was not infected with various different fungi. Moisture contents and hardness of ginseng in all treatments were not changed much until 12 weeks, and surface shrinkage did not occur either. But shear stress increased somewhat in all treatments after 12 weeks. The granule of microstructure in tissue diminished slightly. The apparent Quality of red ginseng was good until 4 weeks of treatment. But as time passed, white skin and wrinkled skin were generated and darkened in its color. B-1 in CA and E-1 in MA were found to be the most favorable one. The content of crude saponin did not change significantly during storage of CA or MA by preservation conditions and period. Though a small increase in saponin content from 4.92% to 5.43% was recognized in B-1, which was treated with preservative and 6.0% In B-2, control, this could rather explain increment of soluble component by butanol. Thus, there was no change in total contents of ginsenoside pattern and composition of each content. The Rbl content in B-1 and B-2 were 0.98%, and 0.97%, respectively, whereas that of control was 0.96%. E-1 of MA, treated with preservative was 5.32% after 12 weeks, but was 5.73% in control, indicating that ginsenosides pattern was quite similar to that of CA storage.

  • PDF

Synthesis and Properties of In-situ $MoSi_2$/W Composites ($MoSi_2$/W 복합재료의 합성과 성질에 관한 연구)

  • Jang, Dae-Kyu;Abbaschian, R.
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.938-944
    • /
    • 1998
  • $MoSi_2$/W composites were fabricated by vacuum hot press at $1600^{\circ}C$ under 30MPa for 3 hrs. The effects of the amount of tungsten in the composites was explained in terms of the microstructure and mechanical properties. Although tungsten was mainly substituted to Mo atoms forming a complete solid solution of (Mo.W).Si, (x= 1, 5, y=2, 3). the grain size of composites became smaller with the increase of tungsten added. Vickers hardness was increased with the increase of tungsten content due to the solid-solution hardening. On the other hand, toughness of composites decreased sharply by increasing the amount of tungsten. Optimum tungsten amount was determined to be a 10 vol% of composite. Indentation fracture toughness was calculated to be 4.5MPa\sqrt{m}$ in this composites, compared with $2.7MPa\sqrt{m}$ in pure $MoSi_2$.

  • PDF

Failure Behavior of Laser Cladding Layer used by Fe-based Bulk Metallic Glass (Fe계 벌크 비정질 합금을 이용한 레이저 용접층의 파손 거동)

  • Lim, Byung-Chul;Kim, Dae-Hwan;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5743-5747
    • /
    • 2015
  • In this study, Fe-based bulk amorphous alloy powder manufactured using gas atomization fabrication was used for laser welding. the fracture behavior of welding layer were analyzed. Tensile test results show that the destruction occurred immediately after the elastic deformation, After plastic deformation of the substrate, the destruction occurred. The actual maximum tensile strength of the welding layer and the substrate are 959.9MPa and 220.4MPa. welding layer were each $485.5{\pm}21$ and $197.4{\pm}14$ to the substrate and the actual microhardness, The welding layer has very high hardness. The welding layer showed a very weak fine acicular structure. The base material was shown in the micro structure appear a coarse grain. SEM observations of the fracture after the tensile test. Fracture morphology of the base metal and the welding layer showed ductile fracture and brittle fracture, respectively.

Study of Basic Properties to Develope SiC Ceramic Heater by Self-Charge with Electricity (자기 통전식 SiC세라믹 발열체 개발을 위한 기초 특성 연구)

  • Shin, Yong-Deok;Ko, Tae-Hun;Ju, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.124-125
    • /
    • 2007
  • The composites were fabricated $\beta$-SiC and $TiB_2$ powders with the liquid forming additives of 8, 12, 16[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressureless annealing at $1,650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. The relative density, the flexural strength, the Young's modulus and the Vicker's hardness showed the highest value of 82.29[%], 189.5[MPa], 54.60 [GPa] and 2.84[GPa] for SiC-$TiB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature. The relative density of SiC-$TiB_2$ composites was lowered due to gaseous products of the result of reaction between SiC and $Al_2O_3+Y_2O_3$. The electrical resistivity showed the lowest value of 0.012[${\Omega}{\cdot}cm$] for 16[wt%] at 25[$^{\circ}C$]. The electrical resistivity was all negative temperature coefficient resistance (NTCR) in the temperature ranges from 25[$^{\circ}C$] to 700[$^{\circ}C$].

  • PDF

Improvement of wear resistance of Zircaloy-4 by nitrogen implantation

  • Han, Jeon G.;Lee, Jae s. J;Kim, Hyung J.;Keun Song;Park, Byung H.;Guoy Tang;Keun Song
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.100-105
    • /
    • 1995
  • Nitrogen implantation process has been applied for improvement of wear resistance of Zircaloy-4 fuel cladding materials. Nitrogen was implanted at 120keV to a total dose range of $1\times 10^{17}$ions/$\textrm{cm}^2$ to $1\times 10^{18}$ions/$\textrm{cm}^2$ at various temperatures between $270^{\circ}C$ and $671^{\circ}C$. The microstructure changes by nitrogen implantation were analyzed by XRD and AES and wear behavior was evaluated by performing ball-on-disc type wear testing at various loads and sliding velocities under unlubricated condition. Nitrogen implantation produced ZrNx nitride above $3\times 10^{17}$ions/$\textrm{cm}^2$ as well as heavy dislocations, which resluted in an increase in microhardness of the implanted surface of up to 1400 $H_k$ from 200 $H_k$ of unimplanted substrate. Hardness was also found to be increased with increasing implantation temperature up to 1760 $H_k$ at $620^{\circ}C$. The wear resistance was greatly improved as total ion dose and implantation temperature increased. The effective enhancement of wear resistance at high dose and temperature is believed to be due to the significant hardening associated with high degree of precipitation of Zr nitrides and generation of prismatic dislocation loops.

  • PDF

MICROSTRUCTURE AND TRIBOLOGY OF $TiB_2$ AND $TiB_2$-TiN DOUBLE-LAYER COATINGS

  • Yang, Yunjie;Chen, Lizhi;Zheng, Zhihong;Wang, Xi;Liu, Xianghuai
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.40-48
    • /
    • 1995
  • $TiB_2$-TiN double-layer coating have been prepared by ion beam enhanced deposition. AES, XRD, TEM and HRTEM were employed to characterize the $TiB_2$ layer. The microhardness of the coatings was evaluated by an ultra low-load microhardness indenter system, and the tribological behavior was examined by a ball-on-disc tribology wear tester. It was found that in a single titanium diboride layer, the composition is uniform along the depth of the film, and it is mainly composed of nanocrystalline $TiB_2$ with hexagonal structure, which resulted from the ion bombardment during the film growth. The hardness of the $TiB_2$ films increases with increasing ion energy, and approaches a maximum value of the $TiB_2$ films increases with increasing ion energy, and approaches a maximum value of 39 Gpa at ion energy of 85 keV. The tribological property of the TiB2 films is also improved by higher energy of 85keV. The tribological property of the $TiB_2$ films is also improved by higher energy ion beam bombardment. There is no major disparity in the mechanical properties of double-layer $TiB_2$/TiN coatings and TiN/$TiB_2$ coatings. Both show an improved wear resistance compared with single-layer $TiB_2$ films. The adhesion of double-layer coatings is also superior to that of single-layer films.

  • PDF

Microstructures of Friction Stir Lap Weld in A5052-H112 Alloy (A5052-H112 합금의 겹치기 마찰교반접합 조직 특성)

  • Ko, Young-Bong;Lee, Joong-Hun;Park, Kyeung-Chae
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.17-24
    • /
    • 2009
  • The Friction Stir Welding(FSW) has mainly been used for making butt joints in Al alloys. Development of Friction Stir Lap Welding(FSLW) would expand the number of applications. Microstructure of FSLW in A5052-H112 alloy was investigated under varying rotation and welding speed. As the rotation speed was increased and the welding speed was decreased, a amount of heat was increased. As a result, bead interval was narrower, bead width are larger, and experimental bead interval was almost similar to theoretical bead interval. Typical microstructures of FSLW A5052-H112 alloy consist of three zones, including Stir Zone(SZ), Thermo-Mechanically Affected Zone(TMAZ) and Heat Affected Zone(HAZ). As a amount of heat was increased, average grain size was larger in three zones. Nevertheless, the aspect ratio was almost fixed for FSLW conditions. The misorientation of SZ, HAZ and TMAZ was examined. A large number of low angle grain boundaries, which were formed by severe plastic deformation, were showed in TMAZ as comparison with SZ and HAZ. Microhardness distribution was high in order of BM, SZ, TMAZ, and HAZ. The Micro-hardness distribution in HAZ, TMAZ of upper plate were lager than lower plate. Relationship between average grain size and microhardness was almost corresponded to Hall-Petch equation.