• Title/Summary/Keyword: microstructure characterization

Search Result 363, Processing Time 0.029 seconds

Sample Preparation for Microstructural Characterization of Ni-Yttria-Stabilized Zirconia Anodes

  • Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.376-380
    • /
    • 2018
  • Microstructural characterization of Ni-yttria-stabilized zirconia (YSZ) anodes using secondary electron images has been limited by a lack of contrast between Ni and YSZ phases. This paper reports a sample preparation method for obtaining secondary electron images that allow the detection of Ni, YSZ, and pore phases together. Ni-YSZ anode samples were obtained by reducing NiO-YSZ samples prepared by using the mixed oxide method. Colloidal silica polishing and electrolytic etching were performed on the Ni-YSZ samples. The morphological change of the sample surface after each polishing process is examined.

Deposition and characterization of compositional gradient CrNx coatings prepared by arc ion plating

  • Zhang, Min;Kim, Kwang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.177-181
    • /
    • 2009
  • Compositional gradient CrNx coatings were fabricated using arc ion plating in Ar/$N_2$ gaseous mixture by gradually increasing $N_2$ flux rate from 0 to 120 SCCM. The effect of negative substrate bias on the film microstructure and mechanical properties were systematically investigated with XRD, GDOES, and SEM. The results show that substrate bias has an important influence on film growth and microstructure of gradient CrNx coatings. The coatings mainly crystallized in the mixture of hexagonal $Cr_{2}N$ and fcc CrN phases. By increasing substrate bias, film microstructure evolved from an apparent columnar structure to an equiaxed one. With increasing substrate bias, deposition rate first increased, and then decreased. The maximum of deposition rate was 15 nm/min obtained at a bias of -50V.

  • PDF

Fabrication and Characterization of AlN films Containing Various Amounts of Co Content

  • Bae, Chang-Hwan;Han, Seung-Oh;Han, Cahng-Suk
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.268-275
    • /
    • 2010
  • A new approach is described for preparing AlN thin films containing various amounts of Co content by using a two-facing targets type sputtering (TFTS) system. The deposited films were annealed isothermally at different temperatures and their microstructure, magnetic properties and resistivity were investigated. A small saturation magnetization ($4{\pi}Ms=0.52{\sim}0.85kG$) was observed irrespective of Co content in the asdeposited films. It was found that annealing conditions can control physical properties as well as the microstructure of the films. A high saturation magnetization (3.7 kG) and resistivity of $2200{\mu}{\Omega}-cm$ was obtained for AlN films containing 25 at.% Co.

Study on the Fabrication and Characterization of Hydrophobic Surface with Hierarchical Microstructure using Spray Coating Deposition Method (스프레이 코팅 증착 방식을 이용한 계층적 미세 구조의 발수표면 제작 및 특성 분석에 대한 연구)

  • Jongyun Choi;Kiwoong Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.15-22
    • /
    • 2023
  • This research introduces an innovative approach for fabricating microstructure surfaces using spray-coating deposition. The resulting surface, referred to as Magnetically Responsive Microstructures (MRM), exhibits hierarchically structured micro-pillar arrays with remarkably high aspect ratios. The fabrication process involves precisely mixing PDMS and hexane with Carbonyl iron powders, followed by ultrasonication and spray-coating on the top of a PDMS substrate placed on the neodymium magnet. The MRM surface shows hydrophobic properties, characterized by a contact angle surpassing 150° and an aspect ratio exceeding 10. Through a comprehensive exploration of critical parameters, including spray amount, magnet-substrate distance, and solution ratio enhanced dynamic tunability and exceptional hydrophobic characteristics are attained. This novel approach holds significant potential for diverse applications in the realm of dynamically tunable microstructures and magnetically responsive surfaces.

Characterization of Microstructure on Porous Silicon Carbide Prepared by Polymer Replica Template Method (고분자 복제 템플릿 방법을 이용하여 제조된 다공성 탄화규소의 미세구조 특성)

  • Lee, Yoon Joo;Kim, Soo Ryong;Kim, Young Hee;Shin, Dong Geun;Won, Ji Yeon;Kwon, Woo Teck
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.539-543
    • /
    • 2014
  • Foam type porous silicon carbide ceramics were fabricated by a polymer replica method using polyurethane foam, carbon black, phenol resin, and silicon powder as raw materials. The influence of the C/Si mole ratio of the ceramic slurry and heat treatment temperature on the porous silicon carbide microstructure was investigated. To characterize the microstructure of porous silicon carbide ceramics, BET, bulk density, X-ray Powder Diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were employed. The results revealed that the surface area of the porous silicon carbide ceramics decreases with increased heat treatment temperature and carbon content at the $2^{nd}$ heat treatment stage. The addition of carbon to the ceramic slurry, which was composed of phenol resin and silicon powder, enhanced the direct carbonization reaction of silicon. This is ascribed to a consequent decrease of the wetting angles of carbon to silicon with increasing heat treatment temperature.

Effect of Heat Treatment on Microstructure and Mechanical Properties of Cold-Rolled 17Mn-1.58Al TWIP Steel (냉간 압연한 17Mn-1.58Al TWIP강의 미세조직 및 기계적 특성에 미치는 열처리 영향)

  • Sinyoung Kim;Chungseok Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.482-490
    • /
    • 2023
  • The purpose of this study was to analyze microstructural changes and evaluate the mechanical properties of TWIP steel subjected to variations in heat treatment, in order to identify optimal process conditions for enhancing the performance of TWIP steel. For this purpose, a homogenization heat treatment was conducted at 1,200 ℃ for 2 h, followed by hot rolling at temperature exceeding 1,100 ℃ and cold rolling. Annealing heat treatment is achieved using a muffle furnace in the range of 600 ℃ to 1,000 ℃. The microstructure characterization was performed with an optical microscope and X-ray diffraction. Mechanical properties are evaluated using micro Vickers hardness, tensile test, and ECO index (UTS × Elongation). The specimens annealed at 900 ℃ and 1,000 ℃ experienced a significant decrease in hardness and strength due to decarburization. Consequently, the decarburization phenomenon is closely related to the heat treatment process and mechanical properties of TWIP steel, and the effect of the microstructure change during annealing heat treatment.