• Title/Summary/Keyword: microstructural damage

Search Result 71, Processing Time 0.019 seconds

Effects of Proton Irradiation on the Microstructure and Surface Oxidation Characteristics of Type 316 Stainless Steel (양성자 조사가 316 스테인리스강의 미세조직과 표면산화 특성에 미치는 영향)

  • Lim, Yun-Soo;Kim, Dong-Jin;Hwang, Seong Sik;Choi, Min Jae;Cho, Sung Whan
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.158-168
    • /
    • 2021
  • Austenitic 316 stainless steel was irradiated with protons accelerated by an energy of 2 MeV at 360 ℃, the various defects induced by this proton irradiation were characterized with microscopic equipment. In our observations irradiation defects such as dislocations and micro-voids were clearly revealed. The typical irradiation defects observed differed according to depth, indicating the evolution of irradiation defects follows the characteristics of radiation damage profiles that depend on depth. Surface oxidation tests were conducted under the simulated primary water conditions of a pressurized water reactor (PWR) to understand the role irradiation defects play in surface oxidation behavior and also to investigate the resultant irradiation assisted stress corrosion cracking (IASCC) susceptibility that occurs after exposure to PWR primary water. We found that Cr and Fe became depleted while Ni was enriched at the grain boundary beneath the surface oxidation layer both in the non-irradiated and proton-irradiated specimens. However, the degree of Cr/Fe depletion and Ni enrichment was much higher in the proton-irradiated sample than in the non-irradiated one owing to radiation-induced segregation and the irradiation defects. The microstructural and microchemical changes induced by proton irradiation all appear to significantly increase the susceptibility of austenitic 316 stainless steel to IASCC.

Nondestructive detection of crack density in ultra-high performance concrete using multiple ultrasound measurements: Evidence of microstructural change

  • Seungo Baek;Bada Lee;Jeong Hoon Rhee;Yejin Kim;Hyoeun Kim;Seung Kwan Hong;Goangseup Zi;Gun Kim;Tae Sup Yun
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.399-407
    • /
    • 2024
  • This study nondestructively examined the evolution of crack density in ultra-high performance concrete (UHPC) upon cyclic loading. Uniaxial compression was repeatedly applied to the cylindrical specimens at levels corresponding to 32% and 53% of the maximum load-bearing capacity, each at a steady strain rate. At each stage, both P-wave and S-wave velocities were measured in the absence of the applied load. In particular, the continuous monitoring of P-wave velocity from the first loading prior to the second loading allowed real-time observation of the strengthening effect during loading and the recovery effect afterwards. Increasing the number of cycles resulted in the reduction of both elastic wave velocities and Young's modulus, along with a slight rise in Poisson's ratio in both tested cases. The computed crack density showed a monotonically increasing trend with repeated loading, more significant at 53% than at 32% loading. Furthermore, the spatial distribution of the crack density along the height was achieved, validating the directional dependency of microcracking development. This study demonstrated the capability of the crack density to capture the evolution of microcracks in UHPC under cyclic loading condition, as an early-stage damage indicator.

Optimal Coating Materials and Methods to Enhance Interfacial Bonding with Steel Pipes in Marine Environments (해양 환경 노출 코팅 강관의 부착성능 확보를 위한 최적 코팅 및 공법연구)

  • Myung Kue Lee;Dongchan Kim;Min Ook Kim
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.265-274
    • /
    • 2024
  • This study reviews previous research on various coating materials and methods designed to improve the adhesion and durability of steel pipes exposed to real-world marine environments, with the goal of identifying optimal solutions. The results concerning the adhesion and corrosion resistance of the pipes were categorized and analyzed based on exposure tests in extreme marine conditions to evaluate their stability. Furthermore, a detailed microstructural analysis of the coatings applied to the pipes was performed to assess surface damage, including peeling and delamination. The findings confirmed that coatings effectively prevent corrosion and provide sufficient adhesion and durability. Based on these results, we have proposed suitable coating materials, types, and application methods for steel pipes used in marine environments and offered recommendations for future exposure tests.

The Widening of Fault Gouge Zone: An Example from Yangbuk-myeon, Gyeongju city, Korea (단층비지대의 성장: 경주시 양북면 부근의 사례)

  • Chang, Tae-Woo;Jang, Yun-Deuk
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.145-152
    • /
    • 2008
  • A fault gouge zone which is about 25cm thick crops out along a small valley in Yangbuk-myeon, Gyeongju city. It is divided into greenish brown gouge and bluish gray gouge by color. Under the microscope, the gouges have a lot of porphyroclasts composed of old gouge fragments, quartz, feldspar and iron minerals. Clay minerals are abundant in matrix, defining strikingly P foliation by preferred orientation. Microstructural differences between bluish pay gouge and greenish brown gouge are as follows: greenish brown gouge compared to bluish gray gouge is (1) rich in clay minerals, (2) small in size and number of porphyroclasts, and (3) plentiful in iron minerals which are mostly hematites, while chiefly pyrites in bluish gray gouge. Hematites are considered to be altered from pyrites in the early-formed greenish brown gouge under the influence of hydrothermal fluids accompanied during the formation of bluish gray gouge that also precipitated pyrites. It is believed that the fault core including bluish gray gouge zone and greenish brown gouge zone was formed by progressive cataclastic flow. In the first stage the fault core initiates from damage zone of early faulting. In the second stage damage zone actively transforms into breccia zone by repeated fracturing. The third stage includes greenish brown (old) gouge formation in the center of the fault core mainly by particle grinding. In the third stage further deformation leads to the formation of new (bluish gray) gouge zone while old gouge zone undergoes strain hardening. Consequently, the whole gouge zone in the core widens.

HRTEM Observations on the Modulated Structure in Pseudo-brookite-type Compound, $(In_{0.36}Zn_{1.09})Ti_2O_{5.64}$ (HRTEM에 의한 pseudo-brookite 형 화합물$(In_{0.36}Zn_{1.09})Ti_2O_{5.64}$에서의 변조구조 관찰)

  • Lee, Hwack-Joo;Park, Hyun-Min;Cho, Yang-Koo;Ryu, Hyun;Nahm, Sahn;Bando, Y.
    • Applied Microscopy
    • /
    • v.29 no.1
    • /
    • pp.95-103
    • /
    • 1999
  • Microstructural observations on the pseudo-brookite $MgTi_2O_5$ and the similar type of $(In_{0.36}Zn_{1.09})Ti_2O_{5.64}$ were carried out using a top-entry HRTEM working at 200 kV. The modulated structures were found in $(In_{0.36}Zn_{1.09})Ti_2O_{5.64}$, however, not in $MgTi_2O_5$. The electron diffraction patterns of sublattice in $(In_{0.36}Zn_{1.09})Ti_2O_{5.64}$ are quite similar to those of pseudo-brookite $MgTi_2O_5$. but the complicated superlattice reflections are present in the diffraction patterns. Four types of modulations have been found. The periodicities for the modulated structure are found to be 3.63 nm, 0.79 nm and 0.64 nm along [220] direction, and 0.81 nm along [420] direction. The phase transition from the modulated structure to the unmodulated one was also observed in situ due to the electron beam irradiation reversibly. Further damage by the electron beam made the crystal to be fragmented into many small crystals with the formation of the voids at the kinks in ledged structure of the surface. The anisotropic arrangements of In and O atoms in $(In_{0.36}Zn_{1.09})Ti_2O_{5.64}$ might cause the compound to be unstable under the electron beam.

  • PDF

Comparison of Longitudinal Wave Velocity in Concrete by Ultrasonic Pulse Velocity Method and Impact-Echo Method (초음파 속도법과 충격반향기법에 의한 콘크리트의 종파 속도 비교)

  • Lee, Hoi-Keun;Lee, Kwang-Myong;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.98-106
    • /
    • 2003
  • Nondestructive test (NDT) provides much information on concrete without damage of structural functions. Of NDT methods, elastic wave propagation methods, such as ultrasonic pulse velocity (UPV) method and impact-echo (IE) method, have been successfully used to estimate the strength, elastic modulus, and Poisson's ratio of concrete as well as to detect the internal microstructural change and defects. In this study, the concretes with water-binder ratio ranging from 0.27 to 0.50 and fly ash content of 20% were made and then their longitudinal wave velocities were measured by UPV and IE method, respectively. Test results showed that the UPV is greater than the longitudinal wave velocity measured by the If method, i.e., rod-wave velocity obtained from the same concrete cylinder. It was found that the difference between the two types of velocities decreased with increasing the ages of concrete and strength level. Moreover, for the empirical formula, the dynamic Poisson's ratio, static and dynamic moduli of elasticity, and velocity-strength relationship were determined. It was observed that the Poisson's ratio and the modulus of elasticity determined by the dynamic method are greater than those determined by the static test. Consequently, for the more accurate estimation of concrete properties using the elastic wave velocities, the characteristics of these velocities should be understood.

Observations on the Modulated Structure in Pyrochlore-type Compounds, $In_2(Ti_{1.7}Zn_{0.3})O_{0.67}$ and $In_2(Ti_{1.7}Mg_{0.3})O_{6.7}$ (Pyrochlore형 화합물 $In_2(Ti_{1.7}Zn_{0.3})O_{0.67}$$In_2(Ti_{1.7}Mg_{0.3})O_{6.7}$에서의 변조구조 관찰)

  • Lee, Hwack-Joo;Park, Hyun-Min;Cho, Yang-Koo;Ryu, Hyun;Nahm, Sahn;Bando, Y.
    • Applied Microscopy
    • /
    • v.29 no.4
    • /
    • pp.471-477
    • /
    • 1999
  • Microstructural observations on the pyrochlore-type $Lu_2Ti_2O_7$ and the similar type of compounds, $In_2(Ti_{1.7}Zn_{0.3})O_{6.7}$ and $In_2(Ti_{1.7}Mg_{0.3})O_{6.7}$ which were made by the isothermal heat-treatment at 1623K for 18 days in Pt tube, were carried out using a top-entry HRTEM working at 200 kV. The modulated structures were found in both compounds, however, not in $Lu_2Ti_2O_7$. From the electron diffraction pattern analysis, the modulated superlattices are incommensurate and are 2.69 times of sublattices along (220) direction. The high resolution TEM images have shown that the superlattices consist of alternate superlattices which are composed of two or three sublattices, resulting in the average of 2.7 times of sublattices in accordance with the analysis of electron diffraction patterns. The crystal structures of both compounds are found to quite similar to those of pyrochlore, however the evidence that the cubic axes are slightly deviated from right angle. The modulated structure has gradually changed to the unmodulated structure induced by electron irradiation.

  • PDF

Influence of Chloride Content of on Electrical Resistivity in Concrete (콘크리트내 염소이온량이 전기저항에 미치는 영향)

  • Yoon, In-Seok;Nam, Jin-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.90-96
    • /
    • 2014
  • The electrical resistivity of concrete can be related to two processes involved in corrosion of reinforcement: initiation (chloride penetration) and propagation (corrosion rate). The resisistivity of concrete structure exposed to chloride indicates the risk of early corrosion damage, because a low resistivity is related to rapid chloride penetration and to high corrosion rate. Concrete resistivity is a geometry-independent material property that describes the electrical resistance, which is the ratio between applied voltage and resulting current in a unit cell. In previous study, it was realized that the resistivity of concrete depended on the moisture content in the concrete, microstructural properties, and environmental attack such as carbonation. The current is carried by ions dissolved in the pore liquid. While some data exist on the relationship between moisture content on electrical resistivity of concrete, very little research has been conducted to evaluate the effect of chloride on the conduction of electricity through concrete. The purpose of this study is to examine and quantify the effect of chloride content on surface electrical resistivity measurement of concrete. It was obvious that chloride content had influenced the resistivity of concrete and the relationship showed a linear function. That is, concrete with chloride ions had a comparatively lower resistivity. Decreasing rate of resistivity of concrete was clear at early time, however, after 50 days resistivity was constant irrespective of chloride concentration. Conclusively, this paper suggested the quantitive solution to depict the electrical resistivity of concrete with chloride content.

Microstructure evolution and effect on deuterium retention in oxide dispersion strengthened tungsten during He+ irradiation

  • Ding, Xiao-Yu;Xu, Qiu;Zhu, Xiao-yong;Luo, Lai-Ma;Huang, Jian-Jun;Yu, Bin;Gao, Xiang;Li, Jian-Gang;Wu, Yu-Cheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2860-2866
    • /
    • 2020
  • Oxide dispersion-strengthened materials W-1wt%Pr2O3 and W-1wt%La2O3 were synthesized by wet chemical method and spark plasma sintering. The field emission scanning electron microscopy (FE-SEM) analysis, XRD and Vickers microhardness measurements were conducted to characterize the samples. The irradiations were carried out with a 5 keV helium ion beam to fluences up to 5.0 × 1021 ions/m2 under 600 ℃ using the low-energy ion irradiation system. Transmission electron microscopy (TEM) study was performed to investigate the microstructural evolution in W-1wt%Pr2O3 and W-1wt%La2O3. At 1.0 × 1020 He+/m2, the average loops size of the W-1wt%Pr2O3 was 4.3 nm, much lower than W-1wt% La2O3 of 8.5 nm. However, helium bubbles were not observed throughout in both doped W materials. The effects of pre-irradiation with 1.0 × 1021 He+/m2 on trapping of injected deuterium in doped W was studied by thermal desorption spectrometry (TDS) technique using quadrupole mass spectrometer. Compared with the samples without He+ pre-irradiation, deuterium (D) retention of doped W materials increased after He+ irradiation, whose retention was unsaturated at the damage level of 1.0 × 1022D2+/m2. The present results implied that irradiation effect of He+ ions must be taken into account to evaluate the deuterium retention in fusion material applications.

Development predictive equations for tensile properties of S235JR structural steels after fire

  • Ozer Zeybek;Veysel Polat;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.53 no.2
    • /
    • pp.243-252
    • /
    • 2024
  • Conventional carbon mild steel is a type of steel known for its low carbon content and generally used in the construction industry. Its easily formable and weldable properties make this steel a widely preferred material for buildings, bridges and various construction projects. Other advantages of these steels are their low cost and good mechanical properties. However, high temperatures have an impact on the microstructure and mechanical characteristics of these materials. When high temperatures are present during a fire, steels show significant microstructural changes. Elevated temperatures often decrease the mechanical characteristics of steels. For this purpose, evaluating the post-fire behavior of conventional structural mild steel is an important issue in terms of safety. A combined experimental and parametric study was conducted to estimate fire damage to steel buildings, which is an important issue in the construction field. Tensile test coupons were cut from conventional structural S235JR mild steel sheets with thicknesses ranging from 6 mm to 12 mm. These samples were exposed to temperatures as high as 1200 ℃. After heat treatment, the specimens were allowed to naturally cool to ambient temperature using air cooling before being tested. A tensile test was performed on these coupons to evaluate their mechanical properties after fire, such as their elastic modulus, yield strength, and ultimate tensile strength. The mechanical behavior of conventional S235JR structural steel changed significantly when the heating temperature reached 600℃. The thickness of the steel had a negligible effect on yield strength loss, with the highest measured loss being 50% for 8 mm thickness at 1200℃. For thinner sections (6 mm), yield strength decreased by up to 40%, while thicker samples (12 mm) showed similar reductions. Ultimate tensile strength also showed minimal changes up to 600℃, but beyond this point, a notable decline occurred, with approximately 30% strength loss at 1200℃. The modulus of elasticity remained almost constant up to 800℃, but at 1200℃, the loss reached around 20% for thicker sections (10 mm and 12 mm) and up to 35% for thinner sections (6 mm and 8 mm). Overall, high temperatures led to significant deterioration in both yield and ultimate strength, with a general loss of load-bearing capacity above 600℃. A new equation was formulated from experimental results to predict changes in the mechanical properties of S235JR steels. This equation offers a precise evaluation of buildings made from conventional structural S235JR mild steel after fire exposure. Furthermore, the empirical equation is applicable to low-strength steels with yield strengths ranging from 235 MPa to 420 MPa.