• Title/Summary/Keyword: microstructural

Search Result 2,127, Processing Time 0.027 seconds

Anisotropy Measurement and Fiber Tracking of the White Matter by Using Diffusion Tensor MR Imaging: Influence of the Number of Diffusion-Sensitizing Gradient Direction (확산텐서 MR 영상을 이용한 백질의 비등방성 측정 및 백질섬유 트래킹: 확산경사자장의 방향수가 미치는 영향)

  • Jun, Woo-Sun;Hong, Sung-Woo;Lee, Jong-Sea;Kim, Sung-Hyun;Kim, Jae-Hyoung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Purpose : Recent development of diffusion tensor imaging enables the evaluation of the microstructural characteristics of the brain white matter. However, optimal imaging parameters for diffusion tensor imaging, particularly concerning the number of diffusion gradient direction, have not been studied thoroughly yet. The purpose of this study was to evaluate the influence of the number of diffusion gradient direction on the fiber tracking of the white matter. Materials and methods : 13 healthy volunteers (ten men and three women, mean age 30 years, age range 23-37 years) were included in this study. Diffusion tensor imaging was performed with different numbers of diffusion gradient direction as 6, 15, and 32, keeping the other imaging parameters constant. The imaging field ranged from 1 cm below the pons to 2-3 cm above the lateral ventricle, parallel to the anterior commissure-posterior commissure line. FA (fractional anisotropy) maps were created via image postprocessing, and then FA and its standard deviation were calculated in the genu and the splenium of the corpus callosum on each of FA maps. Fiber tracking of the corticospinal tract in the brain was performed and the number of the reconstructed fibers of the tract was measured. FA, standard deviation of FA and the number of the reconstructed fibers were compared statistically between the different diffusion gradient directions. Results : FA is not statistically significantly different between the different diffusion gradient directions. By increasing the number of diffusion gradient direction, standard deviation of FA decreased significantly, and the number of the reconstructed fibers increased significantly. Conclusion : The higher number of diffusion gradient direction provided better quality of fiber tracking.

  • PDF

Effects of Magnesium on Sulfate Resistance of Alkali-activated Materials (알칼리 활성화 결합재의 황산염 침식에 미치는 마그네슘의 영향)

  • Park, Kwang-Min;Cho, Young-Keun;Ra, Jung-Min;Kim, Hyung-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.109-116
    • /
    • 2017
  • This paper describes the investigation into the durability alkali-activated materials(AAM) mortar and paste samples manufactured using fly-ash(FA) and ground granulated blast furnace slag(GGBFS) exposed to a sulfate environment with different GGBFS replace ratios(30, 50 and 100%), sodium silicate modules($Ms[SiO_2/Na_2O]$ 1.0, 1.5 and 2.0). The tests involved immersions into 10% sodium sulfate solution($Na_2SO_4$), 10% magnesium sulfate solution($MgSO_4$), 10% magnesium nitrate solution($Mg(NO_3)_2$) and 5% magnesium nitrate($Mg(NO_3)_2$+5% sodium sulfate solution+$Na_2SO_4$). The evolution of compressive strength, weight, length expansion and microstructural observation such as x-ray diffraction were studied. As a results, in case of immersed in $Na_2SO_4$, $Mg(NO_3)_2$ and $Mg(NO_3)_2+Na_2SO_4$ shows increase in long-term strength. However, for samples immersed in $MgSO_4$, the general observation was that the compressive strength decreased after immersion. The most drastic reduction of compressive strength and expansion of weight and length occurred when GGBFS or Ms ratios were higher. Also, the XRD analysis of samples immersed in magnesium sulfate indicated that expansion of AAM caused by gypsum($CaSO_4{\cdot}2H_2O$) and brucite(MgOH). The results showed that, an additional condition $Mg^{2+}$ in which ${SO_4}^{2-}$ is the presence of a certain concentration, sulfate erosion has to be accelerated.

Effect of supercooling on the storage stability of rapidly frozen-thawed pork loins (과냉각 온도가 급속냉동-해동 처리된 돈육 등심의 저장성에 미치는 영향)

  • Choi, Eun Ji;Park, Hae Woong;Chung, Young Bae;Kim, Jin Se;Park, Seok Ho;Chun, Ho Hyun
    • Food Science and Preservation
    • /
    • v.24 no.2
    • /
    • pp.168-180
    • /
    • 2017
  • This study was performed to determine the rapid thawing method for reducing the thawing time of frozen pork loins and to examine the effects of supercooling on the microbiological, physicochemical, and sensory qualities of fresh and frozen-thawed pork during storage at -1.5, 4, and $15^{\circ}C$. Forced-air thawing at $4^{\circ}C$ was the most time-consuming process, whereas radio frequency thawing time was the shortest by dielectric heating. The supercooling storage temperature was chosen to be $-1.5^{\circ}C$ because microstructural damages were not observed in the pork sample after cooling at $-1.5^{\circ}C$ for 24 h. Fresh or frozen-thawed pork loins stored at $-1.5^{\circ}C$ had lower drip loss and total volatile base nitrogen, thiobarbituric acid-reactive substance, and Hunter b* levels than loins stored at 4 and $15^{\circ}C$. In addition, the least degree of increase in preexisting microorganisms counts of the fresh or frozen-thawed pork loin samples was obtained during supercooled storage at $-1.5^{\circ}C$. Sensory quality results of fresh and frozen-thawed pork loin samples stored at $-1.5^{\circ}C$ showed higher scores than the samples stored at 4 and $15^{\circ}C$. These data indicate that supercooling at $-1.5^{\circ}C$ in the meat processing industry would be effective for maintaining the quality of pork meats without ice crystal nucleation and formation.

Production of yuzu granules using enzyme treated yuzu pulp powder and evaluation of its physiochemical and functional characterization (유자박 식이섬유를 이용한 유자과립 제조 및 이화학적 특성조사)

  • Seong, Hyeon Jun;Lee, Bo-Bae;Kim, Duck-Hyun;Lee, Seung-Hyun;Ha, Ji-Young;Nam, Seung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.382-390
    • /
    • 2021
  • In this study, solubilized yuzu pulp powder (EYP) was produced using enzyme treated yuzu pulp powder (YP) and used to manufacture yuzu granules (0-20% EYP content). The physicochemical, product stability, and functional properties of Yuzu granules were compared among five enzyme treatments. Among the five treatments, CL had the highest YP solubilization yield (48.68%). Microstructural observation of EYP using FE-SEM revealed that its surface became irregular and porous after enzymatic treatment. Compared to YP, EYP had 2 times lower insoluble dietary fibers and 3 times lower hemicellulose and cellulose content. Among the yuzu granules, IV (yuzu granules with 15% EYP) had an excellent water and oil holding capacity and flowability. IV granule had the highest narirutin and hesperidin content of 3.4 mg and 2.2 mg/g DW, respectively and the highest antioxidant (68.4%) and tyrosinase inhibitory activities (82.5%). Therefore, EYP or granule with EYP can be used as a functional component in food industry or pharmaceutical field.

Structural Geometry, Kinematics and Microstructures of the Imjingang Belt in the Munsan Area, Korea (임진강대 문산지역의 구조기하, 키네마틱스 및 미세구조 연구)

  • Lee, Hyunseo;Jang, Yirang;Kwon, Sanghoon
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.271-283
    • /
    • 2021
  • The Imjingang Belt in the middle-western Korean Peninsula has tectonically been correlated with the Permo-Triassic Qinling-Dabie-Sulu collisional belt between the North and South China cratons in terms of collisional tectonics. Within the belt, crustal-scale extensional ductile shear zones that were interpreted to be formed during collapsing stage with thrusts and folds were reported as evidence of collisional events by previous studies. In this study, we tried to understand the nature of deformation along the southern boundary of the belt in the Munsan area based on the interpretations of recently conducted structural analyses. To figure out the realistic geometry of the study area, the down-plunge projection was carried out based on the geometric relationships between structural elements from the detailed field investigation. We also conducted kinematic interpretations based on the observed shear sense indicators from the outcrops and the oriented thin-sections made from the mylonite samples. The prominent structures of the Munsan area are the regional-scale ENE-WSW striking thrust and the N-S trending map-scale folds, both in its hanging wall and footwall areas. Shear sense indicators suggest both eastward and westward vergence, showing opposite directions on each limb of the map-scale folds in the Munsan area. In addition, observed deformed microstructures from the biotite gneiss and the metasyenite of the Munsan area suggest that their deformation conditions are corresponding to the typical mid-crustal plastic deformation of the quartzofeldspathic metamorphic rocks. These microstructural results combined with the macro-scale structural interpretations suggest that the shear zones preserved in the Munsan area is mostly related to the development of the N-S trending map-scale folds that might be formed by flexural folding rather than the previously reported E-W trending crustal-scale extensional ductile shear zone by Permo-Triassic collision. These detailed examinations of the structures preserved in the Imjingang Belt can further contribute to solving the tectonic enigma of the Korean collisional orogen.

Geological Structure of the Moisan Epithermal Au-Ag Mineralized Zone, Haenam and its Tectonic Environment at the Time of the Mineralization (해남 모이산 천열수 금-은 광호대의 지질구조와 광화작용 당시의 지구조환경)

  • Kang, Ji-Hoon;Lee, Deok-Seon;Ryoo, Chung-Ryul;Koh, Sang-Mo;Chi, Se-Jung
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.413-431
    • /
    • 2011
  • An Epithemal Au-Ag mineralized zone is developed in the Moisan area of Hwangsan-myeon, Haenam-gun, Jeol-lanam-do, Korea, which is located in the southwestern part of the Ogcheon metamorphic zone. It is hosted in the Hwangsan volcaniclastics of the Haenam Formation of the Late Cretaceous Yucheon Group. This research investigated the characteristics of bedding arrangement, fold, fault, fracture system, quartz vein and the time-relationship of the fracture system to understand the geological structure related to the formation of the mineralized zone. On the basis of this result, the tectonic environment at the time of the mineralization was considered. Beds mainly trend east-northeast and gently dip into north-northwest or south-southeast. Their poles have been rearranged by subhorizontal-upright open fold of (east)-northeast trend as well as dip-slip fault. Fracture system was formed through at least 6~7 different deformation events. D1 event; formation phase of the main fracture set of EW (D1-1) and NS (D1-2) trends with a good extensity, D2 event; that of the extension fracture of NW trend, and conjugate shear fracturing of the EW (dextral) and NS (sinistral) trends, D3 event; that of the extension fracture of NE trend, and conjugate shear refracturing of the EW (sinistral) and NS (dextral) trends, D4 event; that of the extension fracture of NS trend showing a poor extensity, D5 event; that of the extension fracture of NW trend, and conjugate shear refracturing of the EW (dextral) and NS (sinistral) trends, D6 event; that of the extension fracture of EW trend showing a poor extensity. Frequency distribution of fracture sets of each deformation event is D1-1 (19.73 %)> D1-2 (16.44 %)> D3=D5 (14.79 %)> D2 (13.70 %)> D4 (12.33 %)> D6 (8.22 %) in descending order. The average number of fracture sets within 1 meter at each deformation event is D6 (5.00)> D5 = D4 (4.67)> D2 (4.60)> D3 (4.13)> D1-1 (3.33)> D1-2 (2.83) in descending order. The average density of all fractures shows 4.20 fractures/1 m, that is, the average spacing of all fractures is more than 23.8 cm. The frequency distribution of quartz veins at each orientation is as follows: EW (52 %)> NW (28 %)> NS (12 %)> NE (8 %) trends in descending order. The average density of all quartz veins shows 4.14 veins/1 m, that is, the average spacing of all quartz veins is more than 24.2 cm. Microstructural data on the quartz veins indicate that the epithermal Au-Ag mineralization (ca. 77.9~73.1 Ma) in the Moisan area seems to occur mainly along the existing D1 fracture sets of EW and NS trends with a good extensity not under tectonic stress but non-deformational environment directly after epithermal rupture fracturing. The D1 fracturing is considered to occur under the unstable tectonic environment which alternates compression and tension of NS trend due to the oblique northward subduction of the Izanagi plate resulting in the igneous activity and deformation of the Yucheon Group and the Bulguksa igneous rocks during Late Cretaceous time.

Characteristics and Distribution Pattern of Carbonate Rock Resources in Kangwon Area: The Gabsan Formation around the Mt. Gachang Area, Chungbuk, Korea (강원 지역에 분포하는 석회석 자원의 특성과 부존환경: 충북 가창산 지역의 갑산층을 중심으로)

  • Park, Soo-In;Lee, Hee-Kwon;Lee, Sang-Hun
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.437-448
    • /
    • 2000
  • The Middle Carboniferous Gabsan Formation is distributed in the Cheongrim area of southern Yeongwol and the Mt. Gachang area of Chungbuk Province. This study was carried out to investigate the lithological characters and geochemical composition of the limestones and to find out controlling structures of the limestones of the formation. The limestones of the Gabsan Formation are characterized by the light gray to light brown in color and fine and dense textures. The limestone grains are composed of crinoid fragments, small foraminfers, fusulinids, gastropods, ostracods, etc. Due to the recrystallization, some limestones consist of fine crystalline calcites. The chemical analysis of limestones of the formation was conducted to find out the contents of CaO, MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$. The content of CaO ranges from 49.78-60.63% and the content of MgO ranges from 0.74 to 4.63% The contents of Al$_2$O$_3$ and Fe$_2$O$_3$ are 0.02-0.55% and 0.02${\sim}$0.84% , respectively. The content of SiO$_2$ varies from 1.55 to 4.80%, but some samples contain more than 6.0%. The limestones of the formation can be grouped into two according to the CaO content: One is a group of which CaO content ranges from 49.78 to 56.26% and the other is a group of which CaO content varies from 59.36 to 60.38%. In the first group, the contents of Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ range very irregularly according to the CaO content. In the second group, the values of MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ are nearly same. Detailed structural analysis of mesoscopic structures and microstructures indicates the five phase of deformation in the study area. The first phase of deformation(D$_1$) is characterized by regional scale isoclinal folds, and bedding parallel S$_1$ axial plane foliation which is locally developed in the mudstone and sandstone. Based on the observations of microstructures, S$_1$ foliations appear to be developed by grain preferred orientation accompanying pressure-solution. During second phase of deformation, outcrop scale E-W trending folds with associated foliations and lineations are developed. Microstructural observations indicate that crenulation foliations were formed by pressure-solution, grain boundary sliding and grain rotation. NNW and SSE trending outcrop scale folds, axial plane foliations, crenulation foliations, crenulation lineations, intersection lineations are developed during the third phase of deformation. On the microscale F$_3$ fold, axial plane foliations which are formed by pressure solution are well developed. Fourth phase of deformation is characterized by map scale NNW trending folds. The pre-existing planar and linear structures are reoriented by F$_4$ folds. Fifth phase of deformation developed joints and faults. The distribution pattern of the limestones is mostly controlled by F$_1$ and F$_4$ folds.

  • PDF