• Title/Summary/Keyword: microstrip structure

Search Result 556, Processing Time 0.049 seconds

Design of Lowpass Filter With the Wide Stopband Characteristics Using Microstrip Line (마이크로스트립 선로를 이용한 광대역 차단특성을 가지는 저역통과 필터 설계)

  • Choi Dong-Muk;Shim Joon-Hwan;Jeon Joongn-Sung;Kim Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.30 no.5 s.111
    • /
    • pp.331-334
    • /
    • 2006
  • In this paper, we designed and fabricated the lowpass filter with the wide stopband characteristics using microp- strip line. Adding the $\lambda_g/4$ open stub at the input and output ports, we developed the L-C ladder type lowpass filter using the open stub which has wide stopband characteristics. In order to reduce the entire size qf this filter, the high impedance microstrip lines were made with the meander structure. The lowpass filter was fabricated with the cutoff frequency 2.3 GHz and its measured frequency responses agree well with the simulation results.

A Study on Design of Microstrip Patch Antenna for Dedicated Short Range Communication (DSRC용 마이크로스트립 패치 안테나 설계 연구)

  • Park, Byeong-Ho;Choi, Yong-Seok;Seong, Hyeon-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.393-400
    • /
    • 2015
  • As the development and distribution of the intelligent transport system is spreading recently and some of the services are commercialized through a pilot project, interest in DSRC with high utilization is increasing and antennas for roadside and on board equipment are being studied. A single patch was used for a vehicle antenna due to the requests of miniaturization of size, but there was performance degradation in most cases due to miniaturization. In addition, some methods to improve performance have been used in the antennas that were previously researched using the arrays, but they have the disadvantages of bulkiness in size of the antennas when using the arrays. Therefore, in this paper, the CPW fed microstrip patch antenna with the simple structure of being compact and easy to produce, which can be used in the OBU of DSRC, was designed.

Design of a Circular Polarization Microstrip Patch Antenna for ISM Band Using a T-junction Power Divide (T-junction 전력 분배기를 이용한 ISM 대역의 원형 편파 마이크로스트립 패치 안테나 설계)

  • Kim, Sun-Woong;Kim, Ji-Hye;Kim, Su-Jeong;Park, Si-Hyeon;Choi, Dong-You
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.77-84
    • /
    • 2018
  • In this paper, the circular polarization microstrip patch antenna using the T-junction power divider is proposed. The operating frequency of the proposed antenna is ISM band of 2.4GHz and the circular polarization is induced by feeding a phase difference of $90^{\circ}$ in two edges. The structure of the antenna consists of a general patch and a T-junction power divider. Furthermore, to optimize the proposed antenna, it is analyzed the reflection coefficient, the axial ration and the radiation pattern. The impedance bandwidth of the antenna is observed to be 40MHz within a range of 2.39 to 2.43GHz, similarly, the axial ratio bandwidth is observed having the bandwidth of about 12MHz in 2.398 to 2.410GHz range. The radiation pattern of the antenna is seen to be right circular polarization. Furthermore, the gain of the antenna is observed to be 2.04 and 3.4dBic at XZ and YZ-plane, respectively.

Dual Band Microstrip Antenna for Design Wimax/LTE 5G for Ship Radio Communication (선박 무선통신을 위한 Wimax/LTE 5G 용 이중대역 마이크로스트립 안테나 설계)

  • Lee, Chang Young
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.601-606
    • /
    • 2020
  • In this paper, we designed a microstrip patch antenna that can be applied to the Wimax/LTE 5G system among wireless media usable in coastal ships. The substrate of the proposed antenna is FR-4 (er=4.3), the size is 22 mm × 30 mm, and it can be used in the 3.5 GHz and 5.8 GHz bands of Wimax/LTE 5G by constructing a simple structure using a microstrip patch antenna. CST Microwave Studio 2014 was used for simulation, and the gain of the simulation result is 2.41dB at 2.4 GHz and 3.96 dB at 3.5 GHz. S-Parameter also showed a result of less than -10 dB (VSWR 2:1) in the desired frequency band, and designed a small variable and a miniaturized antenna so that the antenna can be used in mobile phones or electronic devices.

Design of Circularly Polarized Microstrip Patch Antenna Using Asymmetric Inset Feeding (비대칭 인셋 급전을 이용한 원형 편파 마이크로스트립 패치 안테나 설계)

  • Kwan-Joon Park;Dong-Kook Park
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.279-284
    • /
    • 2024
  • In this paper, we propose a novel method for implementing a microstrip patch antenna with circular polarization characteristics through an asymmetric inset feed structure. The proposed method involves designing an antenna by taking advantage of the length difference of the asymmetric inset slots inserted into the antenna, as well as the lengths of additional slots incorporated into the design to achieve circular polarization characteristics. Using this approach, we designed and fabricated an antenna operating at 2.4 GHz in the S-band for satellite communication systems, utilizing a 1 mm thick FR-4 dielectric substrate. The measurement results confirmed a gain of 2dBi, an axial ratio of less than 3dB, and a reflection coefficient below -10dB in the frequency range of 2.35 to 2.43 GHz. Based on these results, it is expected that by employing the proposed method, circularly polarized antennas utilizing inset feeds can be realised, thereby making them applicable in small satellite communication systems and various wireless IoT environmental service applications that use the ISM band.

A Study on the MDAS-DR Antenna for Shaping Flat-Topped Radiation Pattern (구형 빔 패턴 형성을 위한 MDAS-DR 안테나에 대한 연구)

  • Eom, Soon-Young;Yun, Je-Hoon;Jeon, Soon-Ick;Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.323-333
    • /
    • 2007
  • In this paper, a new MDAS-DR antenna structure designed to efficiently shape a flat-topped radiation pattern is proposed. The antenna structure is composed of a stacked micro-strip patch exciter and a multi-layered disk array structure(MDAS) surrounded by a dielectric ring. The MDAS, which was supplied by a stacked microstrip patch exciter with radiating power, can form a flat-topped radiation pattern in a far field by a mutual interaction with the surrounding dielectric ring. Therefore, the design parameters of the dielectric ring and the MDAS structure are important design parameters for shaping a flat-topped radiation pattern. The proposed antenna used twelve multi-layered disk array elements and a Teflon material with a dielectric constant of 2.05. An antenna operated at 10 GHz$(9.6\sim10.4\;GHz)$ was designed in order to verify the effectiveness of the proposed antenna structure. The commercial simulator of CST Microwave $Studio^{TM}$, which was adapted to a 3-D antenna structure analysis, was used for the simulation. The antenna breadboard was also fabricated and its electrical performance was measured in an anechoic antenna chamber. The measured results of the antenna breadboard with a flat-topped radiation pattern were found to be in good agreement with the simulated one. The MDAS-DR antenna gain measured at 10 GHz was 11.18 dBi, and the MDAS-DR antenna was capable of shaping a good flat-topped radiation pattern with a beam-width of about $40^{\circ}$, at least within a fractional bandwidth of 8.0 %.

Circuit Model Analysis for Traces that Cross a DGS

  • Jung, Kibum;Lee, Jongkyung;Chung, Yeon-Choon;Choi, Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.240-246
    • /
    • 2012
  • This paper presents a novel modeling technique for traces that cross a defected ground structure. A simple and accurate equivalent circuit model provides clear insight into the coupling mechanism between a microstrip line and a slot or split. The circuit models consist of a transformer as the coupling mechanism and LC resonators as the ground with a slot or split structure. Resistors, capacitors, and inductors are added to the model to increase accuracy and equivalence at high frequency. Simulated and measured S-parameters are presented for defected ground structures. The accuracy and validity of the proposed equivalent circuit model is verified by evaluation of the S-parameter characteristics of the defected ground structures and comparison with measured results.

A Suppression of the Undesired Radiation on the Corrugated DGS by using Resisror (저항을 이용한 주름진 DGS에서 불요 전자파 방사의 억압 방법)

  • Kim, Gi-Rae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.72-76
    • /
    • 2003
  • The defected ground structure (DGS ) for microstrip structure can be used to protect analog/RF signal from SSN interference of digital circuits on PCB with common ground. However, the basic DGS gives rise to undesired emissions that may interfere with nearby circuitry due to the ground discontinuity. In this paper, we have proposed the modified structure, Corrugated DGS and the method to reduce the radiation by adding the lumped resistor on the proposed Corrugated DGS.

MINIATURIZED MICROSTRIP DUAL BAND-STOP FILTER USING STEPPED IMPEDANCE RESONATORS (P형 계단형 임피던스 공진기를 이용한 소형화된 마이크로스트립 이중 대역 저지 필터)

  • Park, Young-Bae;Kim, Gi-Rae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.43-46
    • /
    • 2011
  • A novel circuit structure of dual-band bandstop filters is proposed in this paper. This structure comprises two shunt-connected tri-section stepped impedance resonators with a transmission line in between. Theoretical analysis from the equivalent circuit and design procedures are described. We represented graphs for filter design from the derived synthesis equations by resonance condition of circuits. Notably, advantages of the proposed filter structure are compact size in design, wide range of realizable resonance frequency ratio, and more realizable impedances.

  • PDF

Semi-Lumped Compact Low-Pass Filter for Harmonics Suppression

  • Li Rui;Kim Dong-Il;Choi Chang-Mook
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.3
    • /
    • pp.171-175
    • /
    • 2006
  • In this paper, a new semi-lumped low-pass filter with three finite attenuation poles at stopband is presented. The new structure is composed of a pair of symmetrical parallel coupled-line and a shunted capacitor. With this configuration, three finite attenuation poles can be available for 2nd, 3rd, and 4th harmonics suppression. The research method is based on transmission-line model for tuning the attenuation poles. In order to examine the feasibility of the proposed structure, a low-pass filter based on microstrip structure with harmonics suppression is designed, fabricated, and measured. The experimental results of the fabricated circuit agree well with the simulation and analytical ones.