• Title/Summary/Keyword: microstrip array antenna

Search Result 294, Processing Time 0.032 seconds

Design of Cavity-Backed Microstrip Dipole Array Antennas with Enhanced Front-to-Back Ratio (전후방비가 개선된 Cavity-Backed 마이크로스트립 다이폴 배열 안테나 설계)

  • You, Dong-Gyun;Jeon, Jung-Ik;Lee, Hyoung-Ki;Choi, Hak-Keun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 2009
  • In this paper, a TRS band(Trunked Radio System: $806{\sim}866\;MHz$) array antenna has a good front-to-back ratio characteristics for the mobile communication base station is proposed. The proposed array antenna is composed of the $5{\times}3$ radiated elements which are the microstrip dipole antennas with the cavity-backed reflector. For the validity of the proposed antenna, the $5{\times}3$ array antenna is designed, fabricated, and its radiation characteristics are measured. As a result of measurements, the antenna gain is over 13.3 dBi and the front-to-back ratio is over 40 dB at the useable frequency band. We confirm that the designed antenna can be used as the mobile communication base station antenna with the excellent back lobe characteristics.

Estimation of the Substrate Size with Minimum Mutual Coupling of a Linear Microstrip Patch Antenna Array Positioned Along the H-Plane

  • Kwak, Eun-Hyuk;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.320-324
    • /
    • 2015
  • Mutual coupling between antenna elements of a linear microstrip patch antenna array positioned along the H-plane including the effect of edge reflections is investigated. Simple formulas are presented for the estimation of the grounded dielectric substrate size with minimum mutual coupling. The substrate sizes calculated by these formulas are in good agreement with those obtained by the full-wave simulation and experimental measurement. The substrate size with minimum mutual coupling is a function of the effective dielectric constant for surface waves and the distance between the antenna centers. The substrate size with minimum mutual coupling decreases as the effective dielectric constant for surface waves on a finite grounded dielectric substrate increases.

A Design and Analysis of the Microstrip Array Patch Antenna with Resonant frequency of 5.8GHz (5.8GHz 1 ${\times}$ 4 Array Microstrip Antenna의 설계와 그 특성에 관한 연구)

  • Cho, Young-Kyun;Kim, Hyeong-Seok;Chung, Tae-Kyung;Kim, Ho-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1993-1995
    • /
    • 2003
  • In this paper, a Dolph-Tschebyscheff type Microstrip array patch Antenna was designed and simulated with a commercial tools. Then we fabricated an Antenna and took a measurement of the radiation pattern of the Antenna in the Anechoic Chamber room. Despite of the same case, each simulation using commercial tools showed some different results. The simulation using the Microwave Studio gave more desirable result than the ADS. We found the error of the progress of production.

  • PDF

A Study on the Desin of Microstrip Antenna for Mobile System (Mobile 시스템을 위한 마이크로스트립 안테나 설계에 관한 연구)

  • 고영혁;이종악
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.2
    • /
    • pp.34-40
    • /
    • 1993
  • A microstrip antenna for mobile system are designed at the resont frequency 0.88 GHz. The microstrip array antenna are designed to depend on the size of rectanular microstrip path for the relative current distribution to be 1:4.69:1 using Tchebyscheff polynominals. Gain difference between the main lobe and sidelobe is calculated for theoritical values of 20 dB. The designed microstrip array antenna are mesureed various characteristics, such as return loss, radiation pattern, V.S.W.R, bandwidth, and agreed with each other and theoretical value. Also it is presented a process of phase variation of patch array antenna depend on relative current distribution for beam scanning.

  • PDF

A Two-Element Circularly-Polarized Antenna Array for UHF-Band RFID Reader Applications

  • Park Joung-Min;Kim Yun-Mi;Ahn Bierng-Chearl;Park Chan-Sik;Cha Eun-Jong
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.36-46
    • /
    • 2006
  • In this paper, we present a two-element circularly-polarized antenna array for UHF-band RFID reader applications. The antenna element in the array is a comer-truncated rectangular patch placed on a thick plastic-foam dielectric. The patch is fed on one of its edges by a microstrip line printed on a separate thin substrate. The array antenna is fed by a microstrip power divider. Parametric studies on the patch are carried out, from which an optimum design of a single antenna element is derived. The element spacing and the feed network of the array are investigated. A commercial electromagnetic software is employed in the analysis and design of the antenna. The designed array is fabricated and tested. Measurements show good performance characteristics of the fabricated antenna: a 11.2-dBi gain, a reflection coefficient of - 14 dB, an axial ratio less than 3 dB over 3-dB beamwidths of 40 and 60 degrees on two principal planes.

Broadband polarimetric Microstrip Antennas for Space-borne SAR

  • Hong, Lei;Qunying, Zhang;Guang, Fu
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.465-470
    • /
    • 2002
  • A novel phased array antenna system for space-borne polarimetric SAR is proposed and completed in this paper.The antenna system assures polarimetric and multi-mode capability of SAR. It has broadband, high polarization isolation and high port to port isolation. The antenna system is composed of broadband polarimetric microstrip antenna, T/R modules and multifunction beam controller nit. The polarimetric microstrip antenna has more than 100MHz bandwidth at L-band with -30dB polarization isolation and high port to port isolation. The microstrip element and T/R module's structure and characteristics, the subarray's performances measuring results are presented in detail in this paper. A design scheme on beam controller of the phased array antenna is also proposed and completed, which is based on Digital Signal Processing (DSP) chip -TMS320F206. This beam controller unit has small size and high reliability compared with general beam controller. In addition, the multifunction beam controller unit can acquire and then send the T/R module's working states to detection system in real time.

  • PDF

The Design of a K-Band 4$\times$4 Microstrip Patch Array Antennas with High Directitvity (고지향성 구현을 갖는 K-밴드 4$\times$4 마이크로스트립 패치 어레이 안테나의 설계)

  • Lee, Ha-Young;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.161-166
    • /
    • 2007
  • In this paper, two 4$\times$4 rectangular patch array antennas operating at 20 GHz are implemented for the satellite communication. The sixteen patch antennas and microstrip feeding line are printed on a single-layered substrate. The design goal is to achieve high directivity and gain by optimizing design parameters through permutations in element spacing. The spacing between the array elements is chosen to be 0.736$\lambda$. Numerical simulation results indicate that the HPBW(Half-Power Beam Width) of the 4$\times$4 patch array antenna is 18.78 degrees in the E-plane and 18.48 degrees in the H-plane with a gain of 17.18 dBi. Numerical simulations of a 4$\times$4 recessed patch array antenna yield a HPBW of 18.71 degrees in the E-plane and 17.82 degrees in the H-plane with a gain of 19.43 dBi.

Microstrip Line Fed Rectangular Microstrip Patch Antenna and its Array (마이크로스트립 전송선으로 급전되는 사각형 마이크로스트립 패치 안테나 및 배열 안테나에 관한 해석 및 실험)

  • 박동국
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.152-156
    • /
    • 1989
  • Parameters of a microstrip patch antenna such as the resonant frequency, radiation conductance, and the bandwidth are calculated. The rectangular microstrip patch antenna fed by a microstrip transmission line is fabricated and its resonant frequency, radiation pattern, and input voltage standing wave ratio are measured. The measured resonant frequency for 13.0mm$\times$9.7mm copper clad woven PTFE/glass laminate plate is 9.06Ghz, where the calculative is 9.00Ghz. And the measured vswr shows that the bandwidth of the antenna is 225MHz for vswr less then 2.0 which the calculated quality factor of the patch gives the bandwidth OF 280ghZ. The measured radiation pattern for 5 element as well as 4 element patch array shows less then 4dB deviation in the first side lobes from the designed values for both E and H plane pattern. This diviation is believed to be the power division errors of the power divider.

  • PDF

Design of a Ka-Band Microstrip Array Antenna for Satellite Communication (위성통신용 Ka-Band 마이크로스트립 배열안테나의 설계)

  • 류정기;임인성;이덕재;민경일;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.1
    • /
    • pp.142-149
    • /
    • 1999
  • In this paper, Aperture-coupled microstrip array antenna was designed and manufactured for satellite communication at Ka-Band. We analyzed a microstrip radiation element and designed power divider using $\lambda$g/4 transformer and T-junction power divider. A manufactured Aperture-coupled $2\times2$ microstrip array antenna has a resonant frequency of 20 GHz. The experimental results are as followings : resonant frequency of 19.62 GHz, VSWR 1.0692, return loss -29.61 dB, Bandwidth 1.76 GHz and -3 dB beamwidth $42^{\circ}$.

  • PDF

A Simulation Study of the Inset-fed 2-patch Microstrip Array Antenna for X-band Applications (X-band 대역용 2-패치 마이크로스트립 인셋 급전 어레이 안테나 시뮬레이션 연구)

  • Nkundwanayo Seth;Gyoo-Soo Chae
    • Advanced Industrial SCIence
    • /
    • v.3 no.2
    • /
    • pp.31-37
    • /
    • 2024
  • This paper presents a single and 2-patch microstrip array antenna operated on a frequency of 10.3GHz(x-band). It outlines the process of designing a microstrip patch array antenna using CST MWS. Initially, a single microstrip antenna was designed, followed by optimization using CST MWS to attain optimal return losses and gain. Subsequently, the design was expanded to create a 2×1 microstrip inset-fed array antenna for the X-band applications. The construction material is Roger RO4350B, with specific dimensions (h=0.79mm, 𝜖r = 3.54). The achieved results include an S11 of -18dB at the resonant frequency (10.3GHz), a gain of 9.82dBi, a bandwidth of 0.165GHz, and a 3-dB beamwidth of 30°, 121° in Az(𝜑=0) and El(𝜑=90) plane, respectively. The future plan involves the fabrication of this array antenna and further expansion to a 4×4 array of microstrip antennas. It is then incorporated on the X-band applications for practical uses.