• Title/Summary/Keyword: microstrip array antenna

Search Result 295, Processing Time 0.024 seconds

A Study on the Shaped-Beam Antenna with High Gain Characteristic (고이득 특성을 갖는 성형 빔 안테나에 대한 연구)

  • Eom, Soon-Young;Yun, Je-Hoon;Jeon, Soon-Ick;Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.62-75
    • /
    • 2007
  • This paper describes a shaped-beam antenna for increasing the antenna gain of a radiating element. The proposed antenna structure is composed of an exciting element and a multi-layered disk array structure(MDAS). The stack micro-strip patch elements were used as the exciter for effectively radiating the electromagnetic power to the MDAS over the broadband, and finite metallic disk array elements - which give the role of a director for shaping the antenna beam with the high gain - were finitely and periodically layered onto it. The efficient power coupling between the exciter and the MDAS should be carried out in such a way that the proposed antenna has a high gain characteristic. The design parameters of the exciter and the MDAS should be optimized together to meet the required specifications to meet the required specifications. In this study, a shaped-beam antenna with high gain was optimally designed under the operating conditions with a linear polarization and the frequency band of $9.6{\sim}10.4\;GHz$. Two methods constructed using thin dielectric film and dielectric foam materials respectively were also proposed in order to implement the MBAS of the antenna. In particular, through the computer simulation process, the electrical performance variations of the antenna with the MDAS realized by the thin dielectric film materials were shown according to the number of disk array elements in the stack layer. Two kinds of antenna breadboard with the MDAS realized with the thin dielectric film and dielectric foam materials were fabricated, but experimentation was conducted only on the antenna breadboard(Type 1) with the MDAS realized with the thin dielectric film materials according to the number of disk array elements in the stack layer in order to compare it with the electrical performance variations obtained during the simulation. The measured antenna gain performance was found to be in good agreement with the simulated one, and showed the periodicity of the antenna gain variations according to the stack layer number of the disk array elements. The electrical performance of the Type 1 antenna was measured at the center frequency of 10 GHz. As the disk away elements became the ten stacks, a maximum antenna gain of 15.65 dBi was obtained, and the measured return loss was not less than 11.4 dB within the operating band. Therefore, a 5 dB gain improvement of the Type 1 antenna can be obtained by the MDAS that is excited by the stack microstrip patch elements. As the disk array elements became the twelve stacks, the antenna gain of the Type 1 was measured to be 1.35 dB more than the antenna gain of the Type 2 by the outer dielectric ring effect, and the 3 dB beam widths measured from the two antenna breadboards were about $28^{\circ}$ and $36^{\circ}$ respectively.

Effect of the Pin Radius on the Radiation Characteristics of a Patch Antenna with an Array of Pins Interconnecting the Patch and the Ground (패치와 접지면 사이에 삽입된 핀 배열을 가지는 안테나의 방사특성에 핀 반경이 미치는 효과)

  • Lee, Woo-Ram;Kim, Tae-Young;Kim, Boo-Gyoun;Shin, Jong-Dug
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.80-89
    • /
    • 2008
  • Patch antennas with an array of pins interconnecting the patch and the ground (Pin array patch antennas) are fabricated and their characteristics are measured. The radiation characteristics of pin array patch antennas are compared to those of conventional patch antennas. The suppressions of the radiation in horizontal directions in E-plane and H-plane are more than 10 dB and 4 dB, respectively. The forward radiation is increased, while the backward radiation is decreased. The directivity is improved because the half-power beamwidth of radiation patterns in both E-plane and H-plane is reduced. The resonance frequency of a pin array patch antenna increases as the pin radius of a pin amy patch antenna increases. An optimum pin radius of a pin array patch antenna exists for the maximum suppression of the radiation in horizontal directions.

Design and Implementation of 2.4 GHz Beamforming antenna using 4×4 Butler Matrix (4×4 버틀러 매트릭스를 이용한 2.4 GHz 빔포밍 안테나 설계 및 구현)

  • Kim, Young-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1687-1695
    • /
    • 2021
  • In this paper, it is designed and analyzed the beamforming antenna using the butler matrix. The operating frequency of the proposed beamforing antenna is ISM band of 2.4 GHz band and the component of the beamforing antenna consisted of a 1×4 array antenna and a 4×4 butler matrix. Each output port of 4×4 butler matrix outputs the signal having a different phase, it is provided to each input port of 1×4 array antenna. The beamforming antenna with four output ports forms a total of four beams. In order to analyze the radiation pattern of the beamforming antenna, it was provided by switching the signal to the input port and proceeded the Individual analysis for the input port 1 to 4. The main beams of the proposed beamforming antenna were formed in the -12°, 40°, -40° and 12° directions according to each input port, respectively.

12GHz 주파수 대역용 $8\times8$ 마이크로스트립 어레이 안테나

  • 황운택
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.3
    • /
    • pp.591-596
    • /
    • 2001
  • In recent years, interest in microstrip antenna has been increasing, primarily because of their low profile, and light weight and relative cheapness. In this paper we present a theoretical analysis of the circular Patch array antenna. The theory is based on cavity model analysis. The calculated results are compared with experimental results showing good agreement. A $8\times8$ array antenna at 12GHz frequency band is designed and tested. The experimental results of relatively good characteristics show that its maximum rain is 24.8(dB), and its impedance bandwidth is 120MHz$(VSWR\leq2)$.

  • PDF

Satellite Communication Microstrip 8X2 Away Antenna for TX / RX Dual Operation at Ku-band (Ku 대역 위성통신 송수신 겸용 마이크로스트립 8X2 배열 안테나)

  • 윤재승;전순익;최재익;채종석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.574-581
    • /
    • 2002
  • Microstrip $8{ imes}2$ sub-array antennas for a extension to active phased array antennas are designed, fabricated and measured for TX/RX dual operation in satellite communication and a reception of satellite broadcasting. For the frequency range from 11.7 to 12.75 GHz for RX and from 14 to 14.5 GHz for TX, two orthogonal linear polarizations of ${pm}45^{\circ}$ are used to transmit and receive simultaneously with one radiator. They adopt dual resonance between two patches for wideband characteristics in RX band and show isolation characteristics over 20 dB. An electrical beam tilt of $30^{\circ}$ is achieved and a tapered power distribution, narrow element spacing are used for the purpose of low side-lobe characteristics.

Effect of a Finite Substrate on the Mutual Coupling of a Pair of Microstrip Patch Antennas Positioned along the E-plane (유한한 기판 크기가 E-평면상에 배열된 두 개의 패치안테나간의 상호결합에 미치는 영향)

  • Kim, Tae-Young;Kim, Gun-Su;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.6
    • /
    • pp.26-34
    • /
    • 2010
  • The mutual coupling of a pair of microstrip patch antennas on a finite grounded dielectric substrate is influenced by the diffracted field of surface waves from the edges of a substrate. The effective dielectric constant of a grounded dielectric substrate determines the distance between the antenna center and the edge of a substrate to obtain the minimum mutual coupling between a pair of microstrip patch antennas. The optimum substrate size with the minimum mutual coupling is easily calculated using the image method. The optimum substrate sizes using the linage method are in good agreement with the results obtained by the full wave simulation.

Bending Fatigue Characteristics of Surface-Antenna-Structure (복합재료 표면안테나 구조의 굽힘 피로특성 연구)

  • 김동현;황운봉;박현철;박위상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1647-1650
    • /
    • 2003
  • The Objective of this work was to design Surface Antenna Structure (SAS) and investigate fatigue behavior of SAS that was asymmetric sandwich structure. This term, SAS, indicates that structural surface becomes antenna. Constituent materials were selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, SSFIP elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.5 GHz and final demonstration article was 16${\times}$8 array antenna. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue lift curve of SAS was obtained. The fatigue load was determined experimentally at a 0.75(1.875kN) load level. SAS concept is the first serious attempt at integration for both antenna and composite engineers and promises innovative future communication technology.

  • PDF

Bending Fatigue Characteristics of Surface-Antenna-Structure (복합재료 표면안테나 구조의 굽힘 피로특성 연구)

  • 김동현;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.108-111
    • /
    • 2003
  • The Objective of this work was to design Surface Antenna Structure (SAS) and investigate fatigue behavior of SAS that was asymmetric sandwich structure. This term, SAS, indicates that structural surface becomes antenna. Constituent materials were selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, SSFIP elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.5 GHz and final demonstration article was $16\;{\times}\;8$ array antenna. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue life curve of SAS was obtained. The fatigue load was determined experimentally at a 0.75(1.875kN) load level. SAS concept is the first serious attempt at integration for both antenna and composite engineers and promises innovative future communication technology.

  • PDF

Design of an X-band patch array antenna for an energy saving system (절전센서용 X-밴드 대역 패치 어레이 안테나 설계)

  • Chae, Gyoo-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.125-129
    • /
    • 2010
  • This paper introduces an X-band microstrip patch array antenna that can be suitable for an energy saving system. The presented patch antenna comprises with 2-element linear array. The antenna is simulated using CST MWS and manufactured using FR-4(h=1.0mm, ${\varepsilon}r=4.4$). The estimated bandwidth, gain and beamwidth are 4%(VSWR$\leq$2), 6.3dBi and about 60o in elevation and 15o in azimuth, respectively. The antenna is fabricated and optimized based on the simulation result and installed on the backside of the sensor circuit and measured. The measured bandwidth, gain and beamwidth are 7%(VSWR$\leq$2), 4.8dBi and about 55o(El)/15o(Az), respectively.