• Title/Summary/Keyword: microsomal enzymes

Search Result 107, Processing Time 0.026 seconds

Hypoglycemic and Antioxidative Effects of Dietary Sea-Tangle Extracts Supplementation in Streptozotocin-Induced Diabetic Rats (Streptozotocin-유발 당뇨쥐에서 다시마 추출물 첨가식이의 항당뇨 및 항산화 효과)

  • 조영자;방미애
    • Journal of Nutrition and Health
    • /
    • v.37 no.1
    • /
    • pp.5-14
    • /
    • 2004
  • The purpose of this study was to investigate the effect of dietary sea-tangle extracts on blood glucose levels, serum lipid levels, thiobarbituric acid reactive substance (TBARS) and glutathione enzymes in diabetic rats treated with streptozotocin (STZ) Four groups of rats (Sprague-Dawley male rats, 180 - 200g) were consisted of normal rats fed control diet (C), diabetic rats fed control diet (CD), normal rats fed sea-tangl extracts diet (E), and diabetic rats fed sea-tangle extracts diet (ED). Diabetes was induced by single injection of streptozotocin (60 mg/kg B.W.). After 7 weeks, rats were sacrificed, serum glucose, serum total cholesterol, triglyceride levels and glutathione enzymes were measured. Urine was significantly higher in CD and ED groups than those of others (p < 0.05). Levels of amylase, calcium, uric acid, hemoglobin, cholesterol and low density lipoprotein (LDL)-cholesterol were different among four groups. But high density cholesterol (HDL)-cholesterol of ED group was significantly higher (p < 0.05) than other groups (C and E group) And the weekly change of serum glucose was decreased in the 3th,4th and 5th weeks. But serum triglyceride (TG) of diabetic rats fed sea-tangle extracts diet (ED) was lower than diabetic rats fed control diet (CD). Activity of hepatic microsomal G6Pase was significantly increased CD and ED groups higher than C and E group, but kidney was decreased ED group. Hepateic glutathione S-transferase (GST) of CD and ED group were significantly lower than C and E group (p<0.05), glutathione peroxidase (GPX) of E and ED group were significantly higher than C and CD group (p<0.05), glutathione reductase (GR) activities of ED group was significantly lower than other groups, malondialdehyde (MDA) of ED was lower than E and CD group, but kidney was increased significant in ED group compared to liver. These results suggested that dietary sea-tangle extracts reduce .hepatic disorders such as oxidant than kidney. In conclusion, dietary sea-tangle extracts groups reduced blood TG and hepatic MDA levels in STZ-induced diabetic rats.

Chemopreventive Activity of Turmeric Essential Oil and Possible Mechanisms of Action

  • Liju, Vijayasteltar Belsamma;Jeena, Kottarapat;Kuttan, Ramadasan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6575-6580
    • /
    • 2014
  • This study aimed to evaluate the antimutagenic and anticarcinogenic activity of turmeric essential oil as well as to establish biochemical mechanisms of action. Antimutagenicity testing was accomplished using strains and known mutagens with and without microsomal activation. Anticarcinogenic activity was assessed by topical application of 7, 12 - dimethylbenz[a]anthracene (DMBA) as initiator and 1% croton oil as promoter for the induction of skin papillomas in mice. Inhibition of p450 enzymes by TEO was studied using various resorufins and aminopyrene as substrate. Turmeric essential oil (TEO) showed significant antimutagenic activity (p<0.001) against direct acting mutagens such as sodium azide ($NaN_3$), 4-nitro-O-phenylenediamine (NPD) and N-methyl-N-nitro N'nitrosoguanine (MNNG). TEO was found to have significant antimutagenic effect (>90%) against mutagen needing metabolic activation such as 2-acetamidoflourene (2-AAF). The study also revealed that TEO significantly inhibited (p<0.001) the mutagenicity induced by tobacco extract to Salmonella TA 102 strain. DMBA and croton oil induced papilloma development in mice was found to be delayed and prevented significantly by TEO application. Moreover TEO significantly (P<0.001) inhibited isoforms of cytochrome p450 (CYP1A1, CYP1A2, CYP2B1/2, CYP2A, CYP2B and CYP3A) enzymes in vitro, which are involved in the activation of carcinogens. Results indicated that TEO is antimutagenic and anticarcinogenic and inhibition of enzymes (p450) involved in the activation of carcinogen is one of its mechanisms of action.

Anti-inflammatory Effects in LPS-treated RAW 264.7 Cells and the Influences on Drug Metabolizing Enzyme Activities by the Traditional Herbal Formulas, Yongdamsagan-Tang and Paljung-san

  • Ha, Hyekyung;Jin, Seong Eun;Seo, Chang-Seob;Shin, Hyeun-kyoo
    • The Journal of Korean Medicine
    • /
    • v.42 no.4
    • /
    • pp.10-24
    • /
    • 2021
  • Objectives: Yongdamsagan-tang (YST) and Paljung-san (PJS) in traditional medicine and finasteride in modern medicine are used to treat benign prostatic hyperplasia (BPH). In recent, the use of combination herbal remedies with conventional drugs has been increasing. Therefore, we investigated the anti-inflammatory effects of these drugs to treat BPH and the influence of herbal formulas on finasteride metabolism. Methods: The inhibitory effects of the herbal formulas and finasteride on the production of inflammatory mediators and cytokines were determined in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Additionally, the influence of herbal formulas on activities of human drug metabolizing enzymes (DMEs) was assessed using human microsomal enzymes. Results: We observed that YST, PJS and finasteride inhibited the production of nitric oxide (NO), prostaglandin E2 (PGE2) and interleukin-6 (IL-6) in RAW 264.7 cells. The half maximal inhibitory concentration (IC50) of YST on PGE2 production was calculated to be below 25 ㎍/mL. YST inhibited the activity of uridine diphosphate-glucuronosyltransterase (UGT) 1A4 with an IC50 value of 49.35 ㎍/mL. The activities of cytochrome P450 (CYP) 1A2, CYP2B6, CYP2C19, CYP3A4, and UGT1A1 were inhibited by PJS (IC50 < 100 ㎍/mL, each). Although PJS and YST inhibited the activities of CYP3A4 and UGT1A4, respectively, these formulas may not influence the metabolism of finasteride because the IC50 values of herbal formulas on DMEs are too high to affect metabolism. Conclusions: Our results suggest that the combination of finasteride and YST or PJS might not influence their drug metabolism and that the drugs may have synergistic effects against BPH.

S-(N,N-Diallyldithiocarbamoyl)-N-acetylcysteine: Synthesis and Biochemical Properties Associated with Chemoprevention (S-(N,N-Diallyldithiocarbamoyl)-N-acetylcysteine의 합성 및 발암억제와 관련된 생화학적 특성)

  • 이병훈
    • Toxicological Research
    • /
    • v.14 no.2
    • /
    • pp.177-181
    • /
    • 1998
  • Dithiocarbamate and mixed disulfide containing allyl functions were designed and synthesized as putative chemopreventive agents, i.e. N,N-diallyldithiocarbamate (DATC) and S-(N,N-diallyldithiocarbamoyl)-N-acetylcysteine (AC-DATC). DATC and AC-DATC were administered and the activities of cytosolic glutathione S-transferase (GST), glutathione reductase (GR) and microsomal N-nitrosodiethylamine (NDEA) deethylase were assayed in order to test the effects of these organosulfur com-pounds on the detoxification and metabolic activation system of NDEA. The amounts of hepatic glutathione (GSH and GSSG) was also determined. The administration of DATC to rats led to an increase in the activity of GR and to an inhibition of CYP2E1-mediated NDEA deethylation. AC-DATC induced the activity of GR and GST, increased the hepatic GSH content and inhibited the rate of NDEA deethylation. The level of GSSG was decreased as a consequence of the increased activity of GR. These effects may contribute to possible antimutagenic and anticarcinogenic action of the dithiocarbamates investigated.

  • PDF

Subcellular Localization of Capsaicin-Hydrolyzing Enzyme in Rat Hepatocytes (Capsaicin 가수분해효소의 흰쥐 간세포내 소재확인)

  • Park, Young-Ho;Lee, Sang-Sup
    • YAKHAK HOEJI
    • /
    • v.38 no.1
    • /
    • pp.12-19
    • /
    • 1994
  • Capsaicin(8-methyl-N-vanillyl-6-nonenamide) is the principal pungent component of Capsicum fruits. This work is directed to the capsaicin-hydrolyzing enzyme playing a key role in the rate limiting and critical step of capsaicin metabolism. In order to get precise information on the enzyme's subcellular location, rat liver homogenate was divided into six subcellular fractions by differential centrifugation technique: crude nuclear pellet, PNS(post nuclear supernatant) fraction, lysosomal pellet, cytosol, Tris wash fraction, micrisomes. Capsaicin-hydrolysing enzyme activity was analysed by high performance liquid chromatography(HPLC). This enzyme was found at the highest specific activity in the microsomal fraction and co-distributed with marker enzymes of the endoplasmic reticulum, NADPH-cytochrome c reductase and nucleoside diphosphatase. This is compatible with the result of ninhydrin color reaction of vanillylamine, primary metabolite of capsaicin hydrolysis, on thin layer chromatography(TLC). This enzyme is most active at pH $8.0{\sim}9.0$. Definite subcellular location of this enzyme will make it easy to proceed with further study.

  • PDF

Thiol Methyltransferase Activity in Cholestatic Rat Liver Induced by Commom Bile Duct Ligation

  • Joo, Il;Kwak, Chun-Sik;Yoon, Chong-Guk
    • Biomedical Science Letters
    • /
    • v.10 no.1
    • /
    • pp.43-48
    • /
    • 2004
  • Changes of thiol methyltransferase (TMT) activity in cholestatic rat liver were studied. Hepatic subcellular and serum TMT activities were determined in cholestatic rat induced by common bile duct (CBD) ligation over a period 28 days. The mitochondrial and microsomal TMT activities in cholestatic rat liver were found to be significantly increased between the 1st and the 28th day after CBD ligation. The TMT activity in serum was significantly increased throughout the experiments. The Vmax values of the above hepatic TMT in cholestatic rat were significantly increased at the 7th day after CBD ligation. However, the Km values of the above hepatic enzymes did not vary in all the experimental groups. Therefore, the results indicate that the biosynthesis of TMT was increased in cholestatic rat liver. The elevated serum TMT activity is most likely caused by increased hepatocytes membrane permeability due to cholestasis mediated liver cell necrosis.

  • PDF

Effects of Intravenous Administration of Taurocholate on Hepatic Aryl Sulfotransferase Activity in Cholestatic Rats

  • Mun Kyo-Cheol;Kim You-Hee;Kwak Chun-Sik
    • Biomedical Science Letters
    • /
    • v.11 no.1
    • /
    • pp.37-43
    • /
    • 2005
  • The possible mechanisms of increased aryl sulfotransferase (AST) isozymes activities in cholestatic rat liver were studied. Hepatic AST-I, II and -III, IV activities were determined from the experimental rats with common bile duct ligation (CBDL). The Michaelis-Menten constants in these hepatic enzymes were also measured. The activities of mitochondrial AST-I, II and -III, IV, and microsomal AST-III, IV as well as their Vmax values were found to be increased significantly in CBDL plus taurocholic acid (TCA) injected group than in the control group, such as CBDL alone groups. However, their Km values in the experimental groups did not vary. The results suggest that TCA stimulates biosynthesis of the AST in the liver.

  • PDF

Effect of the Constituents of Angelicae gigantis Radix on Hepatic Drug Metabolizing Enzymes (참당귀근 성분이 간의 약물대사효소에 미치는 효과)

  • Han, Jung-Mee;Lee, Ihn-Ran;Shin, Kuk-Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.27 no.4
    • /
    • pp.323-327
    • /
    • 1996
  • The ether soluble fraction of the roots of Angelicae gigantis Radix caused a significant prolongation of hexobarbital(HB) induced sleeping time in mice. Through systematic fractionation of the ether fraction monitored by bioassays, two pyranocoumarins, decursinol angelate and decursin were isolated as active principles. Decursin, as a main component, exhibited significant prolongation of HB-induced hypnosis as well as significant inhibition of hepatic microsomal drug metabolizing enzyme(DME) activities at relatively high dose which indicated that it is a weak DME inhibitor.

  • PDF

Cytochrome P-450 2A6 Inhibitor Based on the Indole Moiety

  • Lee, Soo;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.435-442
    • /
    • 2012
  • The cytochrome P-450 enzymes (CYP 2A6) regulate many endogenous signaling molecules and drugs. Aryl alkynes such as 2-ethynylnaphthalene are important P450 inhibitors which have been extensively studied as medicines or as an effective chemical probes for profiling mouse liver microsomal P-450. Here we have synthesized indole-based novel P450 inhibitor, 5-ethynyl indole 3, and showed that it has successfully inhibited CYP 2A6 by chemical inhibition reaction. By using HPLC equipped with a photo diode array(PDA) detector, all of the peaks derived from the enzymatic reaction have been characterized.

Characterization of Pyribenzoxim Metabolizing Enzymes in Rat Liver Microsomes

  • Liu Kwang-Hyeon;Moon Joon-Kwan;Seo Jong-Su;Park Byeoung-Soo;Koo Suk-Jin;Lee Hye-Suk;Kim Jeong-Han
    • Toxicological Research
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • The primary metabolism of pyribenzoxim was studied in rat liver microsomes in order to identify the cytochrome P450 (CYP) isoform(s) and esterases involved in the metabolism of pyribenzoxim. Chemical inhibition using CYP isoform-selective inhibitors such as ${\alpha}$-naphthoflavone, tolbutamide, quinine, chlorzoxazone, troleandomycin, and undecynoic acid indicated that CYP1A and CYP2D are responsible for the oxidative metabolism of pyribenzoxim. And inhibitory studies using eserine, bis-nitrophenol phosphate, dibucaine, and mercuric chloride indicated pyribenzoxim hydrolysis involved in microsomal carboxylesterases containing an SH group (cysteine) at the active center.