• Title/Summary/Keyword: microsomal enzyme

Search Result 188, Processing Time 0.024 seconds

Effect of Allopurinol Pretreatment on the Liver Damage in $CCl_4$-treated Rat (흰쥐에 있어서 사염화탄소에 의한 간손상에 allopurinol의 영향)

  • 배지혜;윤종국;이상일
    • Toxicological Research
    • /
    • v.11 no.2
    • /
    • pp.247-252
    • /
    • 1995
  • To evaluate the effect of xanthine oxidase on liver injury by $CCl_4$, liver damage was induced both in allopurinol pretreated rats (500 mg/kg. ip) and control group by twice intraperitoneal injection of $CCl_4$ (0.1 ml/100 g body wt. 50% in olive oil) at interval of one day. Increases in the levels of serum alanine aminotransferase and liver weight/body weight (%) by $CCl_4$ were significantly smaller inallopurinol pretreated rats than in control whereas the hepatic microsomal glucose-6-pholphatase activities were significantly higher in allopurinol pretreated rats than control group by $CCl_4$ treatment. These results indicates that allopurinol pretreatment may reduce the liver damage in $CCl_4$ intoxicated rats. In rats either with $CCl_4$or not, hepatic type O xanthine oxidase activities were significantly reduced by allopurinol pretreatment and the increasing rate of these enzymes to each control was remarkably lower in allopurinol pretreated rats than control. Liver cytosolic protein contents and aniline hydroxylase, aminopyrine demethylase activities were higher in allopurinol pretreated rats than coirol rats when animals were treated with $CCl_4$. On the other hand, neither allopurinol pretreated nor $CCl_4$ treatment caused any significant changes in hepatic superoxide dismutase and catalase activities. Hepatic glutathione contents were higher in $CCl_4$-treated rats than control, but no significant changes were found in both between the allopurinol treated rats and $CCl_4$-treated rats pretreated with allopurinol, and glutathione and glutathione S-transferase activities were significantly reduced in $CCl_4$-treated rats than control whereas these enzyme activities showed on significant change in both between allopurinel treated and $CCl_4$-treated rats pretreated with allopurinol. It is concluded that xanthine oxidase reaction system augment $CCl_4$ induced liver injury via even oxygen free radical system.

  • PDF

The Preventive Inhibition of Chondroitin Sulfate Against the $CCl_4$-Induced Oxidative Stress of Subcellular Level

  • Lee, Jin-Young;Lee, Sang-Hun;Kim, Hee-Jin;Ha, Jong-Myung;Lee, Sang-Hyun;Lee, Jae-Hwa;Ha, Bae-Jin
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.340-345
    • /
    • 2004
  • Our work in this study was made in the microsomal fraction to evaluate the lipid peroxidation by measuring superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) and to elucidate the preventive role of CS in the $CCl_4$-induced oxidative stress. The excessive lipid peroxidation by free radicals derived from $CCl_4$ leads to the condition of oxidative stress which results in the accumulation of MDA. MDA is one of the end-products in the lipid peroxidation process and oxidative stress. MDA, lipid peroxide, produced in this oxidative stress causes various diseases related to aging and hepatotoxicity, etc. Normal cells have a number of enzymatic and nonenzymatic endogenous defense systems to protect themselves from reactive species. The enzymes in the defense systems, for example, are SOD, CAT, and GPx. They quickly eliminate reactive oxygen species (ROS) such as superoxide anion free radicalㆍO$^{[-10]}$ $_2$, hydrogen peroxide $H_2O$$_2$ and hydroxyl free radicalㆍOH. CS inhibited the accumulation of MDA and the deactivation of SOD, CAT and GPx in the dose-dependent and preventive manner. Our study suggests that CS might be a potential scavenger of free radicals in the oxidative stress originated from the lipid peroxidation of the liver cells of $CCl_4$-treated rats.

Bacterial Reverse Mutation Test of Wild Ginseng Culture Extract (산삼배양추출물의 세균을 이용한 복귀돌연변이시험)

  • Song Si-Whan;Yang Deok Chun;Choung Se Young
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.4
    • /
    • pp.193-197
    • /
    • 2004
  • To evaluate the bacterial reverse mutation of wild ginseng culture extract, the in vitro Ames test using Salmonella typhimurium (TA100, TA1,535, TA98, TA1,537) and Escherichia coli (WP2 uvrA) were performed with wild ginseng extract at the concentrations 0, 1.6, 8, 40, 200, 1,000, 2,500 and $5,000{\mu}g/ml/plate$. Wild ginseng culture extract was negative in Ames test with both Salmonella typhimurium or Escherichia coli with and without rat liver microsomal enzyme (S-9 fraction). According to these results, we concluded that wild ginseng culture extract did not cause bacterial reverse mutation.

Genetics and Breeding for Modified Fatty Acid Profile in Soybean Seed Oil

  • Lee, Jeong-Dong;Bilyeu, Kristin D.;Shannon, James Grover
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.201-210
    • /
    • 2007
  • Soybean [Glycine max(L.) Merr.] oil is versatile and used in many products. Modifying the fatty acid profile would make soy oil more functional in food and other products. The ideal oil with the most end uses would have saturates(palmitic + stearic acids) reduced from 15 to < 7%, oleic acid increased from 23 to > 55%, and linolenic acid reduced from 8 to < 3%. Reduced palmitic acid(16:0) is conditioned by three or more recessive alleles at the Fap locus. QTLs for reduced palmitic acid have mapped to linkage groups(LGs) A1, A2, B2, H, J, and L. Genes at the Fad locus control oleic acid content(18:1). Six QTLs($R^2$=4-25%) for increased 18:1 in N00-3350(50 to 60% 18:1) explained four to 25% of the phenotypic variation. M23, a Japanese mutant line with 40 to 50% 18:1 is controlled by a single recessive gene, ol. A candidate gene for FAD2-1A can be used in marker-assisted breeding for high 18:1 from M23. Low linolenic acid(18:3) is desirable in soy oil to reduce hydrogenation and trans-fat accumulation. Three independent recessive genes affecting omega-3 fatty acid desaturase enzyme activity are responsible for the lower 18:3 content in soybeans. Linolenic acid can be reduced from 8 to about 4, 2, and 1% from copies of one, two, or three genes, respectively. Using a candidate gene approach perfect markers for three microsomal omega-3 desaturase genes have been characterized and can readily be used in for marker assisted selection in breeding for low 18:3.

  • PDF

Effect of Pine Needle Extract (PNE) on Physiological Activity of SD Rats II. Feeding Effect of PNE on Oxygen Radicals and Their Scavenger Enztmes in Brain Membranes of SD Rats (흰쥐의 생리활성에 미치는 송엽 추출물(PNE)의 영향 II. 뇌세포막의 산소라디칼 및 제거효소의 활성에 미치는 PNE의 투여효과)

  • 최진호;김정화;김동우;김경석;이종수;백영호
    • Journal of Life Science
    • /
    • v.8 no.1
    • /
    • pp.91-96
    • /
    • 1998
  • Pine(Pinus densiflora Sieb et Zucc.) is one of rhe popular plant drugs which has been used as a medicine in Asia. To investigate the effect of pine needle extract (PNE) on oxygen radicals and their scavenger enzymes in brain membranes of Sprague- Dawley (SD), make SD rats were fed basic diets(control group), and experimental diets (PNE group) with 0.5 and 1.0% of PNE 6 weeks. Mitochondrial hydroxyl radical levels in brain of 0.5%-PNE and 1.0%-PNE groups were significantly inhibited to 30% and 25%, respectively, and microsomal hydrogen peroxide levels in brain of 0.5%-PNE and 1.0%-PNE groups were significantly inhibited to 15% compared with control group. Cytosolic superoxide rdical levels in 1.0%-PNE group were significantly inhibited to 20% compared with control group. Lipid peroxide(LPO) levels in brain mitochondria of 0.5%-PNE and 1.0%-PNE groups were significantly lower(25% and 35%) than that in control group. Mn-superoxide disumtase (SOD) activities in brain of 0.5%-PNE and 1.0%-PNE groups were significantly higher(18% and 12%) than those in control groups, but Cu,Zn-SOD activities in brain of 0.5%-PNE were significantly activated to 15% compared with control group. Glutathione peroxidase(GSHPx) activities in brain of 1.5%-PNE and 1.0% PNE groups were significantly higher(14% and 12%) than those in control group. These results suggest that more beneficial effects such as inhibition of oxygen radicals and lipid peroxide(LPO). and oncreases of scavenger enzymes in brain membranes of SD rats may be effectively modulated by administration of pine needle extract (PNE)

  • PDF

Effect of SAENGCHINYANGHYOLTANG on the hepatic metabolic enzyme system in streptozotocin-induced diabetic rats (고혈당(高血糖) 쥐의 간(肝) 대사효소계(代謝酵素系)에 미치는 생진양혈탕(生津養血湯)의 영향(影響))

  • Kim, Shin-Seok;Lee, Kyung-Hee;Lee, Cheol-Whan;Choi, Jong-Won;Kim, Seock-Hwan
    • The Journal of Korean Medicine
    • /
    • v.16 no.2 s.30
    • /
    • pp.320-336
    • /
    • 1995
  • SANGNYANGHYOLTANG(SYT) is one of the most important prescription that has been used in oriental medicine for diabetes mellitus. The sudy was done in order to elucidate the anti-diabetic effect of SYT. After pretreatment of SYT(1,000mg/kg) for 6 weeks, the effect of of SYT was prevented on serum liver function test and hepatic lipid peroxide content in rats i.v. injected with streptozotocin(STZ, 50mg/kg, tail vein) 5 weeks after pretreatment of SYT. The hepatic microsomal cytochrome P-450 and aniline hydroxylase were significantly decreased, and aminopyrine N-demethylase activity was significantly increased in SYT-STZ group as compared with control group. Changes in aldehyde oxidase, xanthine oxidase, superoxide dismutase, catalase, epoxide hydrolase, UDP-glucuronyltransferase and sulfotransferase activities were not significantly different in any of the group. The cytosolic glutathione S-transferase activity was significantly decreased in SYT-STZ group as compared with control group. The selenium-independent glutathione peroxidase was significantly increased in SYT-STZ group as compared with control group, but there was no significant difference in selenium-dependent glutathione peroxidase in any of the groups. The hepatic glutathione concentration was significantly increased in SYT-STZ group as compared with control group, and ${\gamma}-glutamylcystein$ synthetase and glutathione reductase activities were not significantly different in any of the groups. The hepatic lipid peroxide content, serum aminotransferase and sorbitol dehydrogenase activities were slightly decreased in significantly in SYT-STZ groups.

  • PDF

Inhibition of Cyclooxygenase and Prostaglandin E2 Synthesis by Crude Methanolic Extract from Euonymus Alatus (Thunb.) Sieb in SKBR3 Human Breast Cancer Cell Line

  • Kim Joong-Oh;Jang Tae-Hyun;Kim Min-Sung;Kim Dong-Il;Lee Tae-Kyun
    • The Journal of Korean Medicine
    • /
    • v.26 no.1 s.61
    • /
    • pp.37-45
    • /
    • 2005
  • In the present study, we examined the effect of crude methanolic extract (CME) from Euonymus alatus (Thunb.) Sieb on arachidonic acid (AA) cascade in SKBR3 human breast cancer cell line. CME had a potent inhibitory activity of prostaglandin E2 (PGE2) release induced by A23187, a $Ca^{2+}$ ionophore. The inhibition was concentration-dependent, with the 50 value of about 5 M. CME had no inhibitory effect on A23187-induced phosphorylation of p42/p44 extracellular signal regulated kinase/mitogen-activated protein kinase or on the liberation of [14C]-AA from the cells labeled with [14C]-AA. However, CME concentration-dependently inhibited the conversion of AA to $PGE_2$ in microsomal preparations, showing its possible inhibition of cyclooxygenase (COX). In enzyme assay in vitro, CME inhibited the activities of both constitutive COX (COX­I) and inducible COX (COX-2) in a concentration-dependent manner, with the 50 values of about 0.8 and 2M, respectively. Lineweaver-Burk plot analysis indicated that CME competitively inhibited the activities of both COX-l and -2. This study is a first demonstration that CME directly inhibits COX activity.

  • PDF

Variations and Trends in Concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) in Air (대기 중 다환방향족 탄화수소류의 오염도 변화 특성)

  • Chung, Yong;Park, Seong-Eun;Hwang, Man-Sik;Hong, Ji-Yeon
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.1_2
    • /
    • pp.43-53
    • /
    • 1998
  • Ambient air levels of polycyclic aromatic hydrocarbons(PAHs) are of concern because of their potential for adverse health effects including transformation of some of these substances to mutagens and carcinogens by mammalian microsomal enzyme system. Airbone particulate samples were collected by a conventional high-volume sampler and by an Anderson cascade impactor on 2 to 3 days in each month over a period of 1 year at a representative site of the heavy traffic area of Seoul from beptember 1994 to August 1995. Ten individual PAHs in sizable air particulates of each stage of two months were separated and analyzed by gas chromatography/mass spectrometry. As a results of analysis, the gross concentrations of PAHs in the fine and coarse particles were higher in the winter month than in the spring, followed in descending order by in the fall and summer. In a study of dependency of 10 PAHs compounds on size distribution of particles at heavy traffic area found that about 85% of the total PAHs content was associated with particles less than 2.0um (fine particles) in diameter of winter sampling period. while 79% were associated with this size fraction during summer period. In according to the mean concentrations of the 10 PAHs in 7 size classification from < 0.38 to> 10.1, the 'size was the smaller, PAHs concentration was the higher. Thus it was found that PAHs concentration was greatly affected by air particle size. Annual mean benzo(a)pyrene equivalents was 5.88ng/m$^3$ and obtained by applying, toxic equivalency factor developed by Nisbet and Lagoy.

  • PDF

Effect of Continuous Exposure to Reactive Oxygen Species on ${\gamma}$-Glutamyltranspeptidase Expression and Activity in HepG2 Cells (HepG2 세포에서 지속적인 활성 산소 노출이 ${\gamma}$-Glutamyltranspeptidase 발현과 활성에 미치는 영향)

  • Kim, Young-Whan;Choe, Dal-Ung
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.230-238
    • /
    • 2004
  • The adverse health effects of a number of environment pollutions are related to the formation of free radicals. Induction of antioxidant defensive system in the response to an oxidative attack is an essential element of the cell to survive. CYP2E1 is easily induced by organic solvents and induces continuous formation of reactive oxygen species (ROS). ${\gamma}$-Glutamyltranspeptidase (${\gamma}$GT) plays an important role in glutathione metabolism and xenobiotic detoxification. To evaluate the characteristic of oxidative stress which induces GGT expression and to understand human antioxidant defensive response against oxidative stress induced by CYP2E1, we studied regulation of ${\gamma}$GT enzyme expression in response to various oxidative stresses in human HepG2 cells. The ${\gamma}$GT activity was not modified after exposure of acute oxidative stress inducing agents (ferric nitrilotriacetate, cumene hydroperoxide, ADP-Fe, O-tetradecanoylphorbol-13-acetate, tumor necrosis factor-alpha). To induce continuous exposure of cells to ROS, HepG2 cells were transfected by human CYP2E1 gene transiently. The CYP2E1 activity was verified with chlorzoxazone hydroxylation. Transfection of CYP2E1 showed continuous 60% increase in intracellular ROS and 240 % increase in microsomal ROS. CYP2E1 overexpressing cells showed increased ${\gamma}$GT activity (2.5-fold). The observed enhancement of ${\gamma}$GT activity correlated with a significant increase of ${\gamma}$GT mRNA (2.1-fold). Treatment with antioxidant strongly prevented the increase in ${\gamma}$GT activity. The CYP2E1 overexpression did not modify toxicity index and increased glutathione levels. These results show that continuous exposure of cells to ROS produced by CYP2E1 up-regulates ${\gamma}$GT; This may be one of the adaptive antioxidant responses of cells to oxidative insult. Present study also suggests that the induction of ${\gamma}$GT could be used as a marker of oxidative stress induced by exposure to organic solvents.

In Vitro Metabolism of a New Neuroprotective Agent, KR-31543 in the Human Liver Microsomes : Identification of Human Cytochrome P450

  • Ji, Hye-Young;Lee, Seung-Seok;Yoo, Sung-Eun;Kim, Hosoon;Lee, Dong-Ha;Lim, Hong;Lee, Hye-Suk
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.239-245
    • /
    • 2004
  • KR-31543, (2S,3R,4S)-6-amino-4-[N-(4-chlorophenyl)-N-(2 -methyl-2H-tetrazol-5-ylmethyl) amino]-3,4-dihydro-2-dimethoxymethyl-3-hydroxy-2-methyl-2H-1-benzopyran, is a new neuroprotective agent for preventing ischemia-reperfusion damage. This study was performed to identify the metabolic pathway of KR-31543 in human liver microsomes and to characterize cytochrome P450 (CYP) enzymes that are involved in the metabolism of KR-31543. Human liver microsomal incubation of KR-31543 in the presence of NADPH resulted in the formation of two metabolites, M1 and M2. M1 was identified as N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl)amine on the basis of LC/MS/MS analysis with a synthesized authentic standard, and M2 was suggested to be hydroxy-KR-31543. Correlation analysis between the known CYP enzyme activities and the rates of the formation of M 1 and M2 in the 12 human liver microsomes have showed significant correlations with testosterone 6$\beta$-hydroxylase activity (a marker of CYP3A4). Ketoconazole, a selective inhibitor of CYP3A4, and anti-CYP3A4 monoclonal antibodies potently inhibited both N-hydrolysis and hydroxylation of KR-31543 in human liver microsomes. These results provide evidence that CYP3A4 is the major isozyme responsible for the metabolism of KR-31543 to M1 and M2.