• Title/Summary/Keyword: microscopic system

Search Result 538, Processing Time 0.028 seconds

A Microscopic Study on Treatment Mechanism of Acid Mine Drainage by Porous Zeolite-slag Ceramics Packed in a Column Reactor System (컬럼반응조 내 충진된 다공성 zeolite-slag 세라믹에 의한 산성광산배수의 처리기작에 대한 미세분석 연구)

  • Yim, Soo-Bin
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.13-26
    • /
    • 2018
  • This research was conducted to elucidate the removal mechanism of heavy metals and sulfate ion from acid mine drainage(AMD) by porous zeolite-slag ceramics (ZS ceramics) packed in a column reactor system. The average removal efficiencies of heavy metals and sulfate ion from AMD by the 1:3(Z:S) porous ZS ceramics in the column reactor under the HRT condition of 24 hours were Al 97.5%, As 98.8%, Cd 86.1%, Cu 96.2%, Fe 99.7%, Mn 64.1%, Pb 97.2%, Zn 66.7%, and $SO_4{^{2-}}$ 76.0% during 121 days of operation time. The XRD analysis showed that the ferric iron from AMD could be removed by adsorption and/or ion-exchange on the porous ZS ceramics. In addition it was known that Al, As, Cu, Mn, and Zn could adsorb or coprecipitate on the surface of Fe precipitates such as schwertmannite, ferrihydrite, or goethite. The EDS analysis revealed that Al, Fe, and Mn, which were of relatively high concentration in the AMD, would be adsorbed and/or ion-exchanged on the porous ZS ceramics and also exhibited that Al, Cu, Fe, Mn, and Zn could be precipitated as the form of metal hydroxide or sulfate and adsorbed or coprecipitated on the surface of Fe precipitates. The microscopic results on the porous ZS ceramics and precipitated sludge in a column reactor system suggested that the heavy metals and sulfate ion from AMD would be eliminated by the multiple mechanisms of coprecipitation, adsorption, ion-exchange as well as precipitation.

The excimer laser ablation of PET for micro-mold insert - The control of cross sectional shape using Fourier optics - (마이크로 금형 제작을 위한 PET의 엑시머 레이저 어블레이션 - 퓨리에 광학을 이용한 가공 단면 형상의 제어 -)

  • Shin, Dong-Sik;Lee, Je-Hoon;Seo, Jung;Kim, Do-Hoon
    • Laser Solutions
    • /
    • v.6 no.3
    • /
    • pp.19-28
    • /
    • 2003
  • The manufacturing process for the microfluidic device can include sequential steps such as master fabrication, electroforming, and injection molding. The laser ablation, using masks, has been applied to the fabrication of channels in microfluidic devices. In this research, an excimer laser was used to engrave microscopic channels on the surface of PET (polyethylene terephthalate), which shows a high absorption ratio for an excimer laser beam with a wavelength of 248 m. When 50-${\mu}{\textrm}{m}$-wide rectangular microscopic channels are ablated with a 500 ${\times}$ 500 ${\mu}{\textrm}{m}$ square mask at a magnification ratio of 1/10, ditch-shaped defects were found in both corners. The measurement of laser beam intensity showed that a coherent image in the PET target caused such defects. Analysis based on the Fourier diffraction theory enabled the prediction of the coherent shape at the image surface as well as the diffraction beam shape between the mask and the image surface. It also showed that the diameter of the aperture had a dominant effect. The application of aperture with a diameter of less than 3 mm helped to eliminate such defects in the ablated rectangular microscopic channels on PET without such ditch-shaped defects.

  • PDF

Discrete element numerical simulation of dynamic strength characteristics of expanded polystyrene particles in lightweight soil

  • Wei Zhou;Tian-shun Hou;Yan Yang;Yu-xin Niu;Ya-sheng Luo;Cheng Yang
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.577-595
    • /
    • 2023
  • A dynamic triaxial discrete element numerical model of lightweight soil was established using the discrete element method to study the microscopic mechanism of expanded polystyrene (EPS) particles in the soil under cyclic loading. The microscopic parameters of the discrete element model of the lightweight soil were calibrated depending on the dynamic triaxial test hysteresis curves. Based on the calibration results, the effects of the EPS particles volume ratio and amplitude on the contact force, displacement field, and velocity field of the lightweight soil under different accumulated strains were studied. The results showed that the hysteresis curves of lightweight soil exhibit nonlinearity, hysteresis, and strain accumulation. The strain accumulated in remolded soil is mainly tensile strain, and that in lightweight soil is mainly compressive strain. As the volume ratio of EPS particles increased, the contact force first increased and then decreased, and the displacement and velocity of the particles increased accordingly. With an increase in amplitude, the dynamic stress of the particle system increased, and the accumulation rate of the dynamic strain of the samples also increased. At 5% compressive strain, the contact force of the particles changed significantly and the number of particles deflected in the direction of velocity also increased considerably. These results indicated that the cemented structure of the lightweight soil began to fail at a compressive strain of 5%. Thus, a compressive strain of 5% is more reasonable than the dynamic strength failure standard of lightweight soil.

Comparison Study on Quality Characteristics of Surface Treatment of Stone Board Materials by Water-jet System and Flame-burner (워터젯 수압분사와 화염버너에 의한 석판재 표면처리의 품질특성 비교연구)

  • 강지호;장명환
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.1
    • /
    • pp.115-128
    • /
    • 2003
  • To comparison the surface treatment methods of stone board materials, the results of Dorry's abrasive test were 23.4 for water-jet system and 18.9 for flame-burner system. Therefore abrasive hardness, the stone board materials by the water-jet system was greater than one by flame-jet system. As a result of Shore's hardness test, the stone board materials by water-jet system was twice greater than one by flame-jet system. Authors carried out microscopic observation to survey a defection of the composition minerals for two methods, but all of the both methods have not founded a defection. Therefore, the stone board materials by water-jet system was greater durability than one by flame-jet for the surface treatment methods.

Exploring the Impacts of Autonomous Vehicle Implementation through Microscopic and Macroscopic Approaches (자율주행차량 도입에 따른 교통 네트워크의 효율성 변화 분석연구)

  • Yook, Dong-Hyung;Lee, Baeck-Jin;Park, Jun-Tae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.14-28
    • /
    • 2018
  • Thanks to technical improvement on the vehicle to vehicle communication and the intelligent transportation system, gradual introduction of the autonomous vehicles is expected soon in the market. The study analyzes the autonomous vehicles' impacts on the network efficiencies. In order to measure the network efficiencies, the study applies the sequential procedures that combines the microscopic and macroscopic simulations. The microscopic simulation attends to the capacity changes due to the autonomous vehicles' proportions on the roadway while the macroscopic simulation utilizes the simulation results in order to identify the network-wide improvement. As expected, the autonomous vehicles efficiently utilizes the existing capacity of the roadway than the human driving does. Particularly, the maximum capacity improvements are expected by the 190.5% on the expressway. The significant capacity change is observed when the autonomous vehicles' proportions are about 80% or more. These improvements are translated into the macroscopic model, which also yields overall network efficiency improvement by the autonomous vehicles' penetration. However, the study identifies that the market debut of the autonomous vehicles does not promise the free flow condition, which implies the possible needs of the system optimal routing scheme for the era of the autonomous vehicles.

Microscopic Study of Sangdong Tungsten Ore Deposit, Korea (상동중석광상(上東重石鑛床)의 현미경적(顯微鏡的) 연구(硏究))

  • Lee, Dai Sung;Kim, Suh-Woon
    • Economic and Environmental Geology
    • /
    • v.2 no.1
    • /
    • pp.1-12
    • /
    • 1969
  • In the Sangdong Mine area, Taebaegsan series (Pre-Cambrian) and Chosun System (Cambro-ordovician) are widely distributed. The Chosun System consists of Yangdug Series (Jangsan Quartzite and Myobong Slate) and The Great Limestone Series (Pungchon Limestone, Shesong Shale, Hwajeol Formation and Dongjeom Quartzite). The mineralized zone containing the main ore body of the Sangdong Mine was developed in the Myobong Slate formation. The result of the field and microscopic study on the mineral paragenesis and it's wall rock alteration in the tungsten ore deposit shows the following features. The orogenic movements of the Post-Chosun System in the Hambaeg Geosyncline are closely related to the tungsten ore deposition in the area, the ore minerals are composed mainly of scheelite, powelite molybdenite and sulfide minerals, and gangue minerals are hornblende, diopside, garnet, quartz, phlogopite, tremolite, biotite, muscovite, fluorite, etc., main ore body was enriched by scheelite bearing quartz vein filling into interstices of formerly mineralized zones, and the minor faults, faults of N $60^{\circ}-70^{\circ}W$, $45^{\circ}-60^{\circ}NE$ and joints, which were formed at the end of the mineralization and the slate. Country rock of the ore body was altered into the following several zones from the outside to the inside; lowgrade recrystalline aureole, silicified sericite zone, and diopside-hornblende zone. Under the microscopic observation of 195 samples taken from throughout ore body can be classified into 10 different groups by their mineral paragenesis as shown in table 2. The garnet-diopside group is primary skarn and it shows gradational change to the groups of later stage by the successive processes of metasomatism. From the stage of quartz-bearing group, the dissemination of scheelite is seen. The crystallization of scheelite in the bed started with the quartz deposition and continued to the last stage when quartz vein intruded into the main ore body. In the field and the under ground investigation a durable limestone bed in thickeness about 20 meters and their remnants in ore body are observed and under microscope calcite remnants are recognized. Hence it is posturated that the ore material moved up through the faults, shear zones or feather cracks and was assimilated with the interbeded limestone, after that the body was affected by the successive differentiated ore solution by gradational increasing in $SiO_2$, $K_2O$ and $H_2O$. Evidently this ore deposit shows the features resulted from pyrometasomatic processes.

  • PDF

Multi-focal Microscopic System Using a Fiber Bundle (광섬유 다발을 이용한 다초점 현미경)

  • Gu, Young-Mo;Ham, Hyo-Shick;Choi, Sung-Eul
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.354-360
    • /
    • 2009
  • We have constructed and analyzed the performance of a simple fiber bundle multi-focal microscope. The microscope had a fiber bundle substituted for micro-lens array that is the core part of MMM(multi-focal multi-photon microscope). The MMM is a type of confocal microscope. To analyze the performance and characteristics of the fiber bundle multi-focal microscope, three types of samples were used: a standard grating, USAF 1951(7, 3), and 1951(7, 6). Using two polarizers and a polarizing beam splitter, we eliminated noise and got clear images. We obtained the FWHM of fiber spot images with the standard grating using two different magnifier lenses which were 63X and 20X, and found an image of the sample as a distribution of fiber spot images. For this case we used the low magnification lens, which gives denser distribution, so that we could get clearer images. In order to test the resolution of the fiber bundle multi-focal microscopic system, we used the USAF 1951 sample which has a smaller line interval than that of the standard grating. The FWHM of the line width of the image coincides well with the real line width of the USAF 1951 sample. We confirmed the performance of a fiber bundle multi-focal microscopic system which is relatively simple but has submicron resolution and is able to get 1600 images at the same time.

Differences in Network-Based Kernel Density Estimation According to Pedestrian Network and Road Centerline Network

  • Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.335-341
    • /
    • 2018
  • The KDE (Kernel Density Estimation) technique in GIS (Geographic Information System) has been widely used as a method for determining whether a phenomenon occurring in space forms clusters. Most human-generated events such as traffic accidents and retail stores are distributed according to a road network. Even if events on forward and rear roads have short Euclidean distances, network distances may increase and the correlation between them may be low. Therefore, the NKDE (Network-based KDE) technique has been proposed and applied to the urban space where a road network has been developed. KDE is being studied in the field of business GIS, but there is a limit to the microscopic analysis of economic activity along a road. In this study, the NKDE technique is applied to the analysis of urban phenomena such as the density of shops rather than traffic accidents that occur on roads. The results of the NKDE technique are also compared to pedestrian networks and road centerline networks. The results show that applying NKDE to microscopic trade area analysis can yield relatively accurate results. In addition, it was found that pedestrian network data that can consider the movement of actual pedestrians are necessary for accurate trade area analysis using NKDE.

Heat treatment characteristics of medium carbon steel by CW Nd:YAG Laser (CW Nd:YAG 레이저를 이용한 중탄소강의 열처리특성)

  • Shin H.J.;Yoo Y.T.;Ahn D.G.;Im K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.438-443
    • /
    • 2005
  • Laser surface hardening is an effective technique used to improve the tribological properties and also to increase the service life of automobile components such as camshafts, crankshatfs, lorry brake drums and gears. High power CO2 lasers and Nd:YAG lasers are employed for localized hardening of materials and hence are of potential application in the automobile industries. The heat is conducted rapidly into the bulk of the specimen causing self-quenching to occur and the formation of martensitic structure. In this investigation, the microstructure features occurring in Nd:YAG laser hardening SM45C steel are discussed with the use of optical microscopic and scanning electron microscopic analysis. Moreover, This paper describes the optimism of the processing parameters for maximum hardened depth of SM45C steel specimens of 3mm thickness by using CW Nd:YAG laser. Travel speed was varied from 0.6m/min to 1.0m/min. The maximum hardness and case depth fo SM45C steel are 780Hv and 0.4mm by laser hardening.

  • PDF

Spray Characteristics on the Electrostatic Rotating Bell Applicator

  • Im, Kyoung-Su;Lai, Ming-Chia;Yoon, Suck-Ju
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2053-2065
    • /
    • 2003
  • The current trend in automotive finishing industry is to use more electrostatic rotating bell (ESRB) need space to their higher transfer efficiency. The flow physics related with the transfer efficiency is strongly influenced by operating parameters. In order to improve their high transfer efficiency without compromising the coating quality, a better understanding is necessary to the ESRB application of metallic basecoat painting for the automobile exterior. This paper presents the results from experimental investigation of the ESRB spray to apply water-borne painting. The visualization, the droplet size, and velocity measurements of the spray flow were conducted under the operating conditions such as liquid flow rate, shaping airflow rate, bell rotational speed, and electrostatic voltage setting. The optical techniques used in here were a microscopic and light sheet visualization by a copper vapor laser, and a phase Doppler particle analyzer (PDPA) system. Water was used as paint surrogate for simplicity. The results show that the bell rotating speed is the most important influencing parameter for atomization processes. Liquid flow rate and shaping airflow rate significantly influence the spray structure. Based on the microscopic visualization, the atomization process occurs in ligament breakup mode, which is one of three atomization modes in rotating atomizer. In the spray transport zone, droplets tend to distribute according to size with the larger drops on the outer periphery of spray. In addition, the results of present study provide detailed information on the paint spray structure and transfer processes.