• Title/Summary/Keyword: microscopic structure

Search Result 518, Processing Time 0.03 seconds

Oligomer Model of PB1 Domain of p62/SQSTM1 Based on Crystal Structure of Homo-Dimer and Calculation of Helical Characteristics

  • Lim, Dahwan;Lee, Hye Seon;Ku, Bonsu;Shin, Ho-Chul;Kim, Seung Jun
    • Molecules and Cells
    • /
    • v.42 no.10
    • /
    • pp.729-738
    • /
    • 2019
  • Autophagy is an important process for protein recycling. Oligomerization of p62/SQSTM1 is an essential step in this process and is achieved in two steps. Phox and Bem1p (PB1) domains can oligomerize through both basic and acidic surfaces in each molecule. The ZZ-type zinc finger (ZZ) domain binds to target proteins and promotes higher-oligomerization of p62. This mechanism is an important step in routing target proteins to the autophagosome. Here, we determined the crystal structure of the PB1 homo-dimer and modeled the p62 PB1 oligomers. These oligomer models were represented by a cylindrical helix and were compared with the previously determined electron microscopic map of a PB1 oligomer. To accurately compare, we mathematically calculated the lead length and radius of the helical oligomers. Our PB1 oligomer model fits the electron microscopy map and is both bendable and stretchable as a flexible helical filament.

A Stud on the Abrasive Wheels Bonded with Soda-borosilicate Glass (Soda-borosilicate Glass를 결합재로 한 연삭 숫돌에 관한 연구)

  • 이희수;박정현;권오현
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.3
    • /
    • pp.178-183
    • /
    • 1979
  • The carborundum abrasive specimens bonded with a soda-borosilicate glass were prepared. Samples fired at specified temperatures with various mixing ratio and forming pressure were examined in terms of the structure, bonding strength, and microscopic observations. Increasing the forming pressure up to 400kg/$\cm^2$, the structure became denser in proportion to the forming pressure. The bonding strength was generally increased with increasing the mixing ratio (Vb/Vg), but the bloating phenomena were observed when samples were fired above 95$0^{\circ}C$ with mixing ratio above 20%, consequently, the bonding strength was decreased. Samples fired at the temperature range 900~95$0^{\circ}C$ with mixing ratio 15~30% had the dense structure with various grades.

  • PDF

A Study on the Metrial Charcterisitics of Material Quality and Milling of Axle Materials for a Automobile (자동차 차축 소재의 금속적 특징 및 밀링 절삭 특성 연구)

  • 채왕석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.77-83
    • /
    • 1997
  • In this paper, we have studied internal quality including chemical compositions, microscopic structure and nonmetalic inclusion of test materials. We have analyzed dynamic characteristics of cutting force of milling including tensile strength value, hardness etc. Test materials are used in the tempered carbon steel and the non-tempered carbon steel. The obtained results are as follows: 1. In analyzing internal quality, the tempered carbon steel have typical martensite structure and the non-tempered carbon steel have ferrite + pearlite structure. 2. Yield strength, tensile strength and hardness value are in the non-tempered carbon steel but elongation is maximum value in the tempered carbon steel. 3. Cutting force is smaller non-tempered carbon steel than tempered carbon steel when feed speed and depth on cut is constant. 4. Cutting force is smaller non-tempered carbon steel than tempered carbon steel when cutting speed and depth of cut is constant.

  • PDF

Investigation of Layered Structure of Fiber Cell Wall in Korean Red Pine by Confocal Reflection Microscopy

  • Kwon, Ohkyung
    • Applied Microscopy
    • /
    • v.44 no.2
    • /
    • pp.61-67
    • /
    • 2014
  • Layered structures of fiber cell wall of Korean red pine (Pinus densiflora) were investigated by confocal reflection microscopy (CRM). CRM micrographs revealed detailed structures of the fiber cell wall such as S1, S2, and S3 layers as well as transition layers (S12 and S23 layers), which are present between the S1, S2, and S3 layers. Microfibril angle (MFA) measurement was possible for the S2 and S3 layer in the cell wall. The experimental results suggest that CRM is a versatile microscopic method for investigation of layered structures and MFA measurement in individual sub layer of the tracheid cell wall.

A Study on the Machining Characteristics by the Internal Quality of Heat Resisting Steel (내열강의 내부품질에 따른 절삭가공 특성에 관한 연구)

  • 채왕석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.24-29
    • /
    • 2000
  • This paper is experimental study of machining characteristics about martensitic heat resisting steel STR11. Machining characteristics are different according to internal quality(chemical compositions, microscopic structure and nonmetallic inclusion) mechanical properties(tensile strength value impact value and hardness) and dynamic cutting force. Following are the results : 1. In analyzing internal quality test materials have typical martensite structure and a minute needle-shaped structure. 2. Tensile strength and reduction of area and hardness are larger. But values of elongation and impact values are smaller. Fracture surface of tensile specimen is ductile. 3, Cutting force is decreasing with cutting speed increasing 4. Cutting force is increasing with feed speed increasing.

  • PDF

A Study on the Internal Quality and the Machining Characteristics of Martensitic Heat Resisting Steel (마르텐사이트계 내열강의 금속 및 기계적 특성에 관한 연구)

  • 채왕석;권용기;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1073-1077
    • /
    • 1997
  • In this paper, we have studied internal quality including chemical compositions, microscopic structure and nonmetalic inclusion of test materials. We have analyzed machining characteristics including tensile strength value, impact value, hardness value etcs. Test materials are usd martensitic heat resisting steel, STR11 and STS420J2. The obtined results are as follows : 1. In analyzing internal quality, STR11 and STR420J2 have typical martensite structure and a minute needle-shaped structure. 2. Tensile strength and reduction of area and hardness value are large STR11 than STS420J2. But elongation impact are smaller STR11 than STS420J2. 3. Fracture surface of tensile speciman is ductile in STR11 and STS420J2.

  • PDF

An Electron Microscopic Structure of Rotavirus by Negative Stain (Negative stain을 이용한 Rotavirus의 투과전자현미경적 구조)

  • Kwon, Jung-Kyun
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.107-114
    • /
    • 1994
  • The Rotaviruses are members of the family Reoviridae and are the major cause of severe childhood gastroenteritis worldwide. Recently, electron microscopy has been used to detect non-group A rotaviruses to determine a relatively high resolution structure of the rotavirion. Mature, infectious virions(double-shelled particles) have a diameter of approximately 70nm, and have a capsid structure composed of two concentric protein layers. We have studied patient's stool specimen by negative staining technique complete removal of sucrose suspension. This negative staining technique that could be carried out in about 30 minutes and that could be used with crude stool specimen was an advantage of major significance. Removal of sucrose in the sample by has been completed washing with distilled of sucrose and by washing with distilled water. Ultrastructurally, typical feature of rotavirus has a double capsid construction with an inner capsid of 55nm and on outer 65-70nm diameter can be clearly demonstrated.

  • PDF

A Study on the Rare-earth Boronizing Treatment of STD 61 Steel (열간금형용강의 희토류붕화처리에 관한 연구)

  • Kim, C.C.;Youn, J.H.;Jang, Y.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.217-223
    • /
    • 2000
  • The boronizing effects of STD 61 steel have been studied on the micro structure and hardness. The STD 61 Steel was soaked in molten salt, consisted of KCl, $BaCl_2$, NaF, $B_2O_3$, FeB, and Ce, at various temperatures and times. The boronizing conditions for the peak hardness were the temperature range of $900^{\circ}C$ to $950^{\circ}C$ for 5 hr and that of $1000^{\circ}C$ for 3 hr, respectively. Four boride layers such as FeB, $Fe_2B$, ${\alpha}$ and matrix layer surface were observed from the microscopic surface examination. The thickness of boride layer was increased by increasing the boronizing time and the temperature. The structure of boride layer was tooth shape.

  • PDF

A Study on the Machining Charcterisitics of Milling of cylinderical Rod Materials for Passenger Car (승용차용 CYLINDER ROD 소재의 밀링 적삭 특성 연구)

  • 채왕석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.143-148
    • /
    • 1996
  • In this paper, we have studied internal quality including chemical compositions, microscopic structure and nonmetalic inclusion of test materials. We have analyzed dynamic characteristics of cutting force of milling including tensile strength value hardness etcs. Test materials are used the tempered carbon steel and the non-tempered carbon steel. The obtained results are as follows: 1.In analyzing internal quality, the tempered carbon steel have typical martensite structure and the non-tempered carbon steel have ferrite+pearlite structure. 2.Yield strength, tensile strength and hardness value are in the non-tempered carbon steel but elongation is maximum value in the tempered carbon steel. 3.Cutting force is smaller non-tempered carbon steel than tempered carbon steel when feed speed and depth of cut is constant. 4.Cutting force is smaller to the tempered carbon steel and smaller non-tempered carbon steel than tempered carbon steel when cutting conditions

  • PDF

Nano-Resolution Connectomics Using Large-Volume Electron Microscopy

  • Kim, Gyu Hyun;Gim, Ja Won;Lee, Kea Joo
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.171-175
    • /
    • 2016
  • A distinctive neuronal network in the brain is believed to make us unique individuals. Electron microscopy is a valuable tool for examining ultrastructural characteristics of neurons, synapses, and subcellular organelles. A recent technological breakthrough in volume electron microscopy allows large-scale circuit reconstruction of the nervous system with unprecedented detail. Serial-section electron microscopy-previously the domain of specialists-became automated with the advent of innovative systems such as the focused ion beam and serial block-face scanning electron microscopes and the automated tape-collecting ultramicrotome. Further advances in microscopic design and instrumentation are also available, which allow the reconstruction of unprecedentedly large volumes of brain tissue at high speed. The recent introduction of correlative light and electron microscopy will help to identify specific neural circuits associated with behavioral characteristics and revolutionize our understanding of how the brain works.