• Title/Summary/Keyword: microscopic mechanism

Search Result 216, Processing Time 0.024 seconds

Spontaneous lingual papillomas in fischer 344 rats (Fischer 344 랫드의 혀 유두종(Lingual papilloma) 자연발생 예)

  • Kang, Boo-hyun;Lim, Chang-hyeong
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.4
    • /
    • pp.635-640
    • /
    • 1992
  • Two cases of lingual masses were observed among 500 Fischer 344 (F344) rats which were used as control and treated animals in a 2 year carcinogenicity study in Toxicology Research Center, Korea Research Institute of Chemical Technology. The masses grossly appeared as tan, pedunculated, fungiform on the dorsal aspect of the base of the tongues. They were approximately $1.5{\times}1.2{\times}0.3cm$ in size. The microscopic features consisted of acanthosis, hyperkeratosis, papillary projection with connective tissue cores and multifocal chronic active inflammation with hair shafts. The results observed support the epigenetic mechanism of tumorigenesis which is caused by Physical stimuli of foreign bodies. Both of the masses were diagnosed as papillomas with the incidence rate of 0.4%(1/250) in each sex on the basis of the gross and microscopic features.

  • PDF

Analysis of Cutting Mechanism by Image Processing on Micro-Cutting in SEM (전자현미경내 마이크로 절삭의 화상처리에 의한 절삭 기구 해석)

  • 허성중
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.89-95
    • /
    • 2003
  • This research analyzes the cutting mechanism of A1100-H18 of commercially pure aluminum by image processing in SEM(Scanning Electron Microscope) for the measurement of strain rate distribution near a cutting edge in orthogonal micro-cutting. The distribution is measured using various methods in order. The methods are in-situ observations of cutting process in SEM, inputting image data, a computer image processing, calculating displacements by SSDA(Sequential Similarity Detection Algorithm) and calculating strain rates by FEM. The min results obtained are as follows: (1)It enables to measure a microscopic displacement near a cutting edge. (2) An application of this system to cutting process of various materials will help to make cutting mechanism clear.

Damage Mechanism of Asphalt Concrete under Low Temperatures

  • Kim, Kwang-Woo;Yeon, Kyu-Seok;Park, Je-Seon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.200-204
    • /
    • 1994
  • Low temperature associated damage mechanism is not well known for asphalt concrete. Many studies have related the thermal cracking of pavement in the roadway in cold region with overall shrinkage of the pavement surface under assumption of homogeneous material. This study, however, was intiated based on the assumption that thermal incompatibility of materials (heterogeneous) in asphalt concrete mixture would be the primary cause of the damages. Acoustic emission technique and microscopic obsevation were employed to evaluate damage mechanism of asphalt concrete due to low temperature. The first method showed the sufficient evidence that asphalt concrete could be damaged by lowered temperature only. The second method showed that the damage by temperature resulted in micro-cracks at the interface between asphalt matrix and aggregate particle. It was concluded that these damage mechanisms were the primary cause of major thermal cracking of asphalt pavement in cold region.

  • PDF

Study On Mechanism of Dielectric Breakdown in Polyimide Film

  • Tong, Laisheng;Zhang, Xueqing;Wu, Guangning
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.3-8
    • /
    • 2004
  • The Pulse Width Modulation (PWM) Inverter plays an important role in express locomotive. Especially after traction motors are fed by fast switching inverters, the interturn insulation is destroyed more heavily. However, a new type of polyimide corona resistant film is developed and used in insulation of traction motors. In order to investigate the service life of this kind of traction motor, the mechanism and characteristics of dielectric breakdown of polyimide corona resistant are studied in the paper. Experiments have been carried out on specimen according to the condition of traction motor. The breakdown point of tested sample film is analyzed through energy spectrum analysis and electron microscopic photograph. At last, it is presented that the characteristics and mechanism of breakdown of polyimide corona resistance film.

  • PDF

A Microscopic Study on Treatment Mechanism of Acid Mine Drainage by Porous Zeolite-slag Ceramics Packed in a Column Reactor System (컬럼반응조 내 충진된 다공성 zeolite-slag 세라믹에 의한 산성광산배수의 처리기작에 대한 미세분석 연구)

  • Yim, Soo-Bin
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.13-26
    • /
    • 2018
  • This research was conducted to elucidate the removal mechanism of heavy metals and sulfate ion from acid mine drainage(AMD) by porous zeolite-slag ceramics (ZS ceramics) packed in a column reactor system. The average removal efficiencies of heavy metals and sulfate ion from AMD by the 1:3(Z:S) porous ZS ceramics in the column reactor under the HRT condition of 24 hours were Al 97.5%, As 98.8%, Cd 86.1%, Cu 96.2%, Fe 99.7%, Mn 64.1%, Pb 97.2%, Zn 66.7%, and $SO_4{^{2-}}$ 76.0% during 121 days of operation time. The XRD analysis showed that the ferric iron from AMD could be removed by adsorption and/or ion-exchange on the porous ZS ceramics. In addition it was known that Al, As, Cu, Mn, and Zn could adsorb or coprecipitate on the surface of Fe precipitates such as schwertmannite, ferrihydrite, or goethite. The EDS analysis revealed that Al, Fe, and Mn, which were of relatively high concentration in the AMD, would be adsorbed and/or ion-exchanged on the porous ZS ceramics and also exhibited that Al, Cu, Fe, Mn, and Zn could be precipitated as the form of metal hydroxide or sulfate and adsorbed or coprecipitated on the surface of Fe precipitates. The microscopic results on the porous ZS ceramics and precipitated sludge in a column reactor system suggested that the heavy metals and sulfate ion from AMD would be eliminated by the multiple mechanisms of coprecipitation, adsorption, ion-exchange as well as precipitation.

A Study on Microscopic Deformation Behaviors of $Nb_3Sn$ Superconducting Composite Tape using Acoustic Emission Technique ($Nb_3Sn$ 복합초전도 테이프의 미시적 변형거동 특성평가를 위한 음향방출기법 적용에 관한 연구)

  • 이민래;이준현
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.22-30
    • /
    • 1999
  • Since the surface diffusion processed $Nb_3Sn$ superconducting tape has the advantage of having large overall critical current density. it is used for the construction of open type MRI superconducting magnets. However one of the disadvantages of this tape is that $Nb_3Sn$ compound often exhibited multiple cracking due to its intrinsic brittleness when subjected to mechanical loading such as bending and winding during the fabrication process for superconducting coil. This will eventually cause the severe degradation of critical current density. Therefore it is important to understand the microscopic deformation behavior of this kind of superconducting tape under the mechanical loading.In this study, acoustic emission(AE) was used to clarify microscopic deformation behavior at room temperature for $Nb_3Sn$ superconducting tape which was strengthened and stabilized with copper. For this purpose, special attention was paid to AE characteristics including AE event, energy, and amplitude distribution which were associated with microscopic mechanism of deformation of $Nb_3Sn$ superconducting tape under tensile load.

  • PDF

Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime (저사이클 피로 영역에서의 Alloy 617 모재와 용접재의 파괴 시험편에 대한 거시적 및 미시적 관찰)

  • Kim, Seon Jin;Dewa, Rando Tungga;Kim, Woo Gon;Kim, Eung Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.565-571
    • /
    • 2016
  • This paper investigates macro- and microscopic fractography performed on fracture specimens from low cycle fatigue (LCF) testings through an Alloy 617 base metal and weldments. The weldment specimens were taken from gas tungsten arc welding (GTAW) pad of Alloy 617. The aim of the present study is to investigate the macro- and microscopic aspects of the low cycle fatigue fracture mode and mechanism of Alloy 617 base metal and GTAWed weldment specimens. Fully axial total strain controlled fatigue tests were conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. Macroscopic fracture surfaces of Alloy 617 base metal specimens showed a flat type normal to the fatigue loading direction, whereas the GTAWed weldment specimens were of a shear/star type. The fracture surfaces of both the base metal and weldment specimens revealed obvious fatigue striations at the crack propagation regime. In addition, the fatigue crack mechanism of the base metal showed a transgranular normal to fatigue loading direction; however, the GTAWed weldment specimens showed a transgranular at approximately $45^{\circ}$ to the fatigue loading direction.

Evaluation of AR Characteristics on Microscopic Fracture Mechanism of A17075/CERP Hybrid Composite (Al 7075/CFRP 하이브리드 복합재료의 미시적 파괴특성에 대한 AE특성평가)

  • 이진경;이준현;윤한기
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.1-6
    • /
    • 2002
  • When compared to other composite materials such as FRP and MMC, hybrid composite material is more attractive one due to the high specific strength and the resistance to fatigue. However, the fracture mechanism of hybrid composite material is extremely complicated because of the bonding structure of metals and FRP. Recently, nondestructive technique has been used to evaluate the fracture mechanism of these composite materials. In this study. AE technique has been used to clarify the fracture mechanism and the degree of damage for Al 7075/CFRP hybrid composite material. It was found that AE event, energy and amplitude among AE parameters were effective to evaluate fracture process of Al 7075/CFRP composite material. In addition, the relationship between the AE signal and the characteristics of failure surface using optical microscope was discussed.

Electron Microscopic Study of Protoplasts Released from the Mycelium of Trichoderma koningii -formation, fine structure, and regeneration of protoplasts- (Trichoderma koningii의 Myelium으로 부터 유래된 protoplast에 관한 전자현미경적 연구 -protoplast의 생성과정, 미세구조와 regeneration-)

  • Lim, H.M.;Park, H.M.;Ha, Y.C.;Hong, S.W.
    • Applied Microscopy
    • /
    • v.13 no.1
    • /
    • pp.49-61
    • /
    • 1983
  • Protoplast releasing mechanisms from Trichoderma koningii, fine structures of the released protoplsts, and their regeneration mode were studied by scanning and transmission electron microscopy. Two types of protoplast releasing mechanisms were observed. In one mechanism, cytoplasm emerged through a cell wall pore developed by cell lytic enzymes and formed a spherical protoplast. In the other mechanism, as the cell wall became progressively thinner, the inner cytoplasm partially rounded to form nonspherical bodies which became spherical protoplasts after being released into the enzyme solution. But, these two types of protoplast releasing mechanisms did not seem to be. mutually exclusive but could occur on the same mycelium simultaneously. And it appeared that cytoplasm which did not become a protoplast by the first mechanism could from a protoplast by the second mechanism. The preparations contained two types of protoplasts, released from different sites of the mycelia. Those released from younger mycelia had dense cytoplasm and small vesicles. Those released from the older mycelia had less dense cytoplasm and larger vacuoles. In the case of regeneration, before producing normal mycelia, most of the protoplasts assumed aberrant tube and yeast-like-forms. Normal mycelia were produced at the end of the yeastlike-forms and sometimes in the middle of the aberrant tube.

  • PDF

A Crossed Beam Study of Atom-Radical Reaction Dynamics (원자-라디칼 반응 동력학의 교차 빔 연구)

  • Ju Seon-Gyu;Gwon Lee-Gyeong;Lee Ho-Jae;Choe Jong-Ho
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.163-164
    • /
    • 2003
  • Reaction dynamics plays an essential role in understanding the microscopic mechanism of elementary chemical processes at the molecular level. Detailed studies of the reactions of atomic species such as hydrogen and second-row atoms with small closed-shell molecules have provided important insights into hydrocarbon synthesis, combustion, interstellar space and atmospheric chemistry. Despite its mechanistic significance, however, the investigations of atom-radical reaction dynamics are quite scarce in comparison to the extensive studies of atom-molecule reactions. (omitted)

  • PDF