• Title/Summary/Keyword: microscopic analysis

Search Result 1,091, Processing Time 0.029 seconds

Designing a Highly Sensitive Eddy Current Sensor for Evaluating Damage on Thermal Barrier Coating (열차폐코팅의 비파괴적 손상 평가를 위한 고감도 와전류 센서 설계)

  • Kim, Jong Min;Lee, Seul-Gi;Kim, Hak Joon;Song, Sung Jin;Seok, Chang Seong;Lee, Yeong-Ze
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.202-210
    • /
    • 2016
  • A thermal barrier coating (TBC) has been widely applied to machine components working under high temperature as a thermal insulator owing to its critical financial and safety benefits to the industry. However, the nondestructive evaluation of TBC damage is not easy since sensing of the microscopic change that occurs on the TBC is required during an evaluation. We designed an eddy current probe for evaluating damage on a TBC based on the finite element method (FEM) and validated its performance through an experiment. An FEM analysis predicted the sensitivity of the probe, showing that impedance change increases as the TBC thermally degrades. In addition, the effect of the magnetic shield concentrating magnetic flux density was also observed. Finally, experimental validation showed good agreement with the simulation result.

Distribution of Toxic and Non-toxic Microcystis in Korean Water Supply (국내 주요 상수원지에서 독성 및 비독성 Microcystis의 분포 특성)

  • Lee, Kyung-Lak;Shin, Yuna;Lee, Jaean;Lee, Jae-Kwan;Kim, Han Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.393-399
    • /
    • 2016
  • This study was conducted to investigate whether the presence of mcy gene and microcystin production are related to morphological characteristics of Korean Microcystis species. We isolated 6 different species of Microcystis (M. aeruginosa, M. ichthyoblabe, M. flos-aquae, M. novacekii, M. viridis and M. wesenbergii) from drinking water supply dams (Yeongchun, Ankei, Gachang), and used microscopic method for morphological identification, molecular method for amplifying a partial region of mcyB gene and ELISA method for microcystin analysis. In the present study, 80% of M. aeruginosa strains contained mcy gene, followed by 45% (10 strains) of M. icthyoblabe, 33% (1 strain) of M. wesenbergii, and 11% (4 strains) of M. flos-aquae. Each percentage of mcy gene in Microcystis morphospecies was similar to that of microcystin production in Microcystis morophospecies. In conclusion, the present study shows that molecular method using mcy gene primers can be used as an indirect indicator for the monitoring of toxic cyanobacteria (Microcystis).

Combination Pretreatment of Calcium and Vitamin C to Enhance the Firmness of Kimchi Sterilized with High-dose Gamma Irradiation

  • Song, Beom-Seok;Kim, Mi-Jung;Park, Jin-Gyu;Kim, Jae-Hun;Kim, Duk-Jin;Han, Sang-Bae;Shin, Jung-Kue;Byun, Myung-Woo;Lee, Ju-Woon
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.751-754
    • /
    • 2008
  • Texture analysis, sensory evaluation, and scanning electronic microscopic (SEM) observation were conducted to evaluate the effects of different calcium salts (calcium lactate, calcium acetate, and calcium chloride) and vitamin C on the textural properties of kimchi, gamma-irradiated at 25 kGy. Increase of the hardness and sensory score were observed in the kimchi pretreated with calcium salt or vitamin C as compared with the untreated and irradiated kimchi. And the hardness and sensory quality of the co-pretreated sample with 0.01% of calcium lactate and 0.3% of vitamin C were the highest after 30 days at $35^{\circ}C$, which indicates that the co-pretreatment is effective in preventing a decrease of the texture and sensory qualities of kimchi by gamma irradiation. Also, this result was supported by the SEM observation.

Measurement of Local Motional Characteristics of Cilia in Respiratory Epithelium Using Image Analysis (영상 분석 방법을 이용한 점막 세포 섬모의 국소적 운동 특성(CBF)의 정량화에 관한 연구)

  • 이원진;박광석
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.113-118
    • /
    • 1998
  • By their rapid and periodic actions, the cilia of the human respiratory tract play an important role in clearing inhaled noxious particles. Based on the automated image-processing technique, we studied the method analyzing ciliary beat frequency (CBF) objectively and quantitatively. Microscopic ciliary images were transformed into digitized gray ones through an image-grabber, and from these we extracted signals for CBF. By means of a FFT, maximum peak frequencies were detected as CBFs in each partitioned block for the entire digitized field. With these CBFs, we composed distribution maps visually showing the spatial distribution of CBFs. Through distribution maps of CBF, the whole aspects of CBF changes for cells and the difference of CBF of neighboring cells can be easily measured and detected. Histogram statistics calculated from the user-defined polygonal window can show the local dominant frequency presumed to be the CBF of a cell or a crust the region includes.

  • PDF

Antimicrobial efficacy and safety analysis of zinc oxide nanoparticles against water borne pathogens

  • Supraja, Nookala;Avinash, B.;Prasad, T.N.V.K.V.
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.127-140
    • /
    • 2017
  • Metal nanoparticles have been intensively studied within the past decade. Nano-sized materials have been an important subject in basic and applied sciences. Zinc oxide nanoparticles have received considerable attention due to their unique antibacterial, antifungal, and UV filtering properties, high catalytic and photochemical activity. In this study, microbiological aspects of scale formation in PVC pipelines bacteria and fungi were isolated. In the emerging issue of increased multi-resistant properties in water borne pathogens, zinc oxide (ZnO) nanoparticle are being used increasingly as antimicrobial agents. Thus, the minimum bactericidal concentration (MBC) and minimum fungal concentration of ZnO nanoparticles towards pathogens microbe were examined in this study. The results obtained suggested that ZnO nanoparticles exhibit a good anti fungal activity than bactericidal effect towards all pathogens tested in in-vitro disc diffusion method (170 ppm, 100 ppm and 30 ppm). ZnO nanoparticles can be a potential antimicrobial agent due to its low cost of production and high effectiveness in antimicrobial properties, which may find wide applications in various industries to address safety issues. Stable ZnO nanoparticles were prepared and their shape and size distribution characterized by Dynamic light scattering (35.7 nm) and transmission electron microscopic TEM study for morphology identification (20 nm), UV-visible spectroscopy (230 nm), X-ray diffraction (FWHM of more intense peak corresponding to 101 planes located at $36.33^{\circ}$ using Scherrer's formula), FT-IR (Amines, Alcohols, Carbonyl and Nitrate ions), Zeta potential (-28.8). The antimicrobial activity of ZnO nanoparticles was investigated against Bacteria and Fungi present in drinking water PVC pipelines biofilm. In these tests, Muller Hinton agar plates were used and ZnO nanoparticles of various concentrations were supplemented in solid medium.

Effect of Ice-Quenching After Degassing on the Hardness Change During Simulated Porcelain Firing in a Metal-Ceramic Pd-Au-Ag Alloy (Pd-Au-Ag계 금속-도재용 합금의 탈가스 처리 후 급냉 처리가 모의소성과정에서 경도변화에 미치는 영향)

  • Kim, Sung-Min;Shin, Hye-Jung;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.43 no.4
    • /
    • pp.317-322
    • /
    • 2016
  • The effect of ice-quenching after degassing on the hardness change during simulated porcelain firing in a metal-ceramic Pd-Au-Ag alloy was investigated by means of hardness test, field emission scanning electron microscopic observations, and X-ray diffraction analysis. The hardness decreased by ice-quenching after degassing, which was induced by the homogenization of the ice-quenched specimen. The decreased hardness by ice-quenching after degassing was recovered from the 1st opaque stage which was the first stage of the remaining firing process for bonding porcelain. The microstructural change showed that the increase in hardness during the remaining firing process was caused by precipitation. The ice-quenching after degassing did not affect the hardness change during the subsequent porcelain firing process.

Castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposite

  • Bhagawati, Deepshikha;Thakur, Suman;Karak, Niranjan
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.15-29
    • /
    • 2016
  • A low cost environmentally benign surface coating binder is highly desirable in the field of material science. In this report, castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposites were fabricated to achieve the desired performance. The hyperbranched polyester resin was synthesized by a three-step one pot condensation reaction using monoglyceride of castor oil based carboxyl terminated pre-polymer and 2,2-bis (hydroxymethyl) propionic acid. Also, the bulk fly ash of paper industry waste was converted to hydrophilic nano fly ash by ultrasonication followed by transforming it to an organonano fly ash by the modification with bitumen. The synthesized polyester resin and its nanocomposites were characterized by different analytical and spectroscopic tools. The nanocomposite obtained in presence of 20 wt% styrene (with respect to polyester) was found to be more homogeneous and stable compared to nanocomposite without styrene. The performance in terms of tensile strength, impact resistance, scratch hardness, chemical resistance and thermal stability was found to be improved significantly after formation of nanocomposite compared to the pristine system after curing with bisphenol-A based epoxy and poly(amido amine). The overall results of transmission electron microscopic (TEM) analysis and performance showed good exfoliation of the nano fly ash in the polyester matrix. Thus the studied nanocomposites would open up a new avenue on development of low cost high performing surface coating materials.

A Simulation Model Development for Analyzing Ripple Effect of Housing Policy by Region (주택 정책의 지역별 시장 파급효과 분석을 위한 시뮬레이션 모델 개발)

  • Yoon, Inseok;Park, Moonseo;Lee, Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.2
    • /
    • pp.68-78
    • /
    • 2019
  • Recently, housing prices have surged, and the government has implemented various regulations, such as finance and taxes. Because of the policy, the nationwide housing price have stabilized, but polarization has occurred. Some argue that regulation can adversely affect the actual demand. Therefore, not only the correlation between market variables but also ripple effect of policy has to be analyzed in policy planning and analysis from a microscopic point of view. In this study, a simulation model was developed by integrating system dynamics for analyzing market structure and agent-based model for modeling decision process of market participants. This research applied the financial regulation and the tax regulation to the model and evaluated the policy effectiveness. This study reveals which feedback dominates according to the policies, which have same purpose. It is because market participants make different decision for each policy. Furthermore, there were other ripple effects not only in the policy target submarket but also in other submarket.

Effect of a Coil Shape on an Impulse Velocity of the Electromagnetic Welding (전자기 용접의 충돌 속도에 대한 코일 형상의 영향)

  • Park, H.;Lee, K.;Lee, J.;Lee, Y.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.28 no.3
    • /
    • pp.135-144
    • /
    • 2019
  • Electromagnetic impulse welding (EMIW) is a type of solid state welding using the Lorentz force generated by interaction between the magnetic field of the coil and the current induced in the workpiece. Although many experimental studies have been investigated on the expansion and compression welding of tube using the EMIW process, studies on the EMIW process of lap joint between flat sheets are uncommon. Since the magnetic field enveloped inside the tube can be controlled with ease, the electromagnetic technique has been widely used for tube welding. Conversely, it is difficult to control the magnetic field in the flat sheet welding so as to obtain the required welding velocity. The current study analyzed the effects of coil shape on the impulse velocity for suitable flat one-turn coil for the EMIW of the flat sheets. The finite element (FE) multi-physics simulation involving magnetic and structural field of EMIW were conducted with the commercial software LS-DYNA to evaluate the several shape variables, viz., influence of various widths, thicknesses, gaps and standoff distances of the flat one-turn coil on the impulse velocity. To obtain maximum impulse velocity, the flat one-turn coil was designed based on the FE simulation results. The experiments were performed using an aluminum alloy 1050 sheets of 1.0mm thickness using the designed flat one-turn coil. Through the microscopic interfacial analysis of the welded specimens, the interfacial connectivity was observed to have no defects. In addition, the single lap joint tests were performed to evaluate the welding strength, and a fracture occurred in the base material. As a result, a flat one-turn coil was successfully designed to guarantee welding with bond strength equal to or greater than the base material strength.

Identification of duck liver-expressed antimicrobial peptide 2 and characterization of its bactericidal activity

  • Hong, Yeojin;Truong, Anh Duc;Lee, Janggeun;Lee, Kyungbaek;Kim, Geun-Bae;Heo, Kang-Nyeong;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.1052-1061
    • /
    • 2019
  • Objective: This study was conducted to identify duck liver-expressed antimicrobial peptide 2 (LEAP-2) and demonstrate its antimicrobial activity against various pathogens. Methods: Tissue samples were collected from 6 to 8-week-old Pekin ducks (Anas platyrhynchos domesticus), total RNA was extracted, and cDNA was synthesized. To confirm the duck LEAP-2 transcript expression levels, quantitative real-time polymerase chain reaction was conducted. Two kinds of peptides (a linear peptide and a disulfide-type peptide) were synthesized to compare the antimicrobial activity. Then, antimicrobial activity assay and fluorescence microscopic analysis were conducted to demonstrate duck LEAP-2 bactericidal activity. Results: The duck LEAP-2 peptide sequence showed high identity with those of other avian species (>85%), as well as more than 55% of identity with mammalian sequences. LEAP-2 mRNA was highly expressed in the liver with duodenum next, and then followed by lung, spleen, bursa and jejunum and was the lowest in the muscle. Both of LEAP-2 peptides efficiently killed bacteria, although the disulfide-type LEAP-2 showed more powerful bactericidal activity. Also, gram-positive bacteria was more susceptible to duck LEAP-2 than gram-negative bacteria. Using microscopy, we confirmed that LEAP-2 peptides could kill bacteria by disrupting the bacterial cell envelope. Conclusion: Duck LEAP-2 showed its antimicrobial activity against both gram-positive and gram-negative bacteria. Disulfide bonds were important for the powerful killing effect by disrupting the bacterial cell envelope. Therefore, duck LEAP-2 can be used for effective antibiotics alternatives.