• Title/Summary/Keyword: microporous membrane

Search Result 95, Processing Time 0.027 seconds

Development of Controlled Release Oral Drug Delivery System by Membrane-Coating Method-I - Preparation and pharmaceutical evaluation of controlled release acetaminophen tablets-

  • Shim, Chang-Koo;Kim, Ki-Man;Kim, Young-Il;Kim, Chong-Kook
    • Archives of Pharmacal Research
    • /
    • v.13 no.2
    • /
    • pp.151-160
    • /
    • 1990
  • In order to develop a controlled-release oral drug delivery system (DDS) which sustains the plasma acetaminophen (AAP) concentration for a certain period of time, microporous membrane-coated tablets were prepared and evaluated in vitro. Firstly, highly water-soluble core tablet of AAP were prepared with various formulations by wet granulation and compression technique. Then the core tablets were coated with polyvinychloride (PVC) in which micronized sucrose particles were dispersed. Effect of formula compositions of core tablets and coating suspensions on the pharmaceutical characteristics such as drug release kinetics and membrane stability of the coated tablets was investigated in vitro. AAP was released from the coated tablets as a zero-order rate in a pH-independent manner. This independency of AAP release to pH change from 1.2 to 7.2 is favorable for the controlled oral drug delivery, since it will produce a constant drug release in the stomach and intestine regardless of the pH change in the GI tract. Drug release could be extended upto 10 h according to the coating condition. The release rate could be controlled by changing the formula compositions of the core tablets and coating suspensions, coat weight per each tablet, and especially PVC/sucrose ratio and particle size of the sucrose in the coating suspension. The coated tablets prepared in this study had a fairly good pharmaceutical characteristics in vitro, however, overall evaluation of the coated tablet should await in vivo absorption study in man.

  • PDF

Nanofiltration of Dye Solutions Through Polyamide Composite Membranes

  • Jonggeon Jegal;Baek, Kyung-Sook;Lee, Kew-Ho
    • Korean Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.12-19
    • /
    • 2002
  • Nanofiltration of aqueous dye solutions was carried out using polyamide (PA) nanofiltration (NF) composite membranes. The PA composite membranes were prepared by the interfacial polymerization of piperazine (PIP) and trimesoyl chloride (TMC) on the surface of microporous polysulfone (PSf) ultrafi1tration (UF) membranes. After characterization in terms of their permeation performance and surface ionic property, they were used for the separation of dye solutions such as Direct Red 75, 80, 81, and Direct Yellow 8 and 27. The separation conditions were varied to study the factors affecting on the permeation performance of the membranes: different concentrations of dye solutions, operating temperature and time, and flow rate of a feed solution. The surface property of the membrane, especially its ionic property, as a function of operating time was examined with a zeta-potentiometer and the relationship between the surface chemistry of the membrane and its permeation properties was also studied.

MODIFIED COMPOSITE MEMBRANES FOR NANOFINTRATION

  • Jegal, Jong-Geon;Oh, Nam-Wun;Park, Duk-Soon;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.35-38
    • /
    • 1999
  • Nanofiltration (NF) composite membranes based of poly (vinyl alcohol) (PVA) and sodium alginate (SA) were prepared by coating PVA/SA (95/5 in wt %) mixture solutions on the microporous polysulfone (PS) supports, followed by the crosslinking with glutaraldehyed. The composite membranes prepared were characterized with a scanning electron microscopy (SEM), a fourier transform infrared spectroscopy(FTIR), an elecrtokinetic analyzer (EKA) and permeation tests.

  • PDF

Preparation of PVDF Membrane by Thermally-Induced Phase Separation

  • Heo, Chi-Haeng;Lee, Kyung-Mo;Kim, Jin-Ho;Kim, Sung-Soo
    • Korean Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • PVDF membrane formation via TIPS was performed for PVDF/DBP and PVDF/DMP systems. PVDF/DBP system showed solid-liquid phase separation behavior, while PVDF/DMP system has liquid-liquid phase separation characteristic as well as solid-liquid phase separation characteristic. PVDF contents and cooling conditions had great influence on structure, and the effects of each parameter were examined. Spherulitic structure was obtained due to the dominant PVDF crystallization. Diluent rejected to the outside of spherulite occupied the surface of the PVDF spherulites to result in the microporous spherulite formation and micro-void between spherulites. PVDF/DMP system had competitive solid-liquid and liquid-liquid phase separation depending on the cooling path.

Modeling of Water Transport in Porous Membrane for PEMFC Humidifer (PEMFC 가습기 용 다공성 중공사막의 물전달 모델링)

  • Hwang, Jun Y.;Park, J.Y.;Kang, K.;Kim, J.H.;Kim, K.J.;Lee, M.S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.96.2-96.2
    • /
    • 2011
  • Water transport through the microporous membrane was modeled considering capillary condensation as well as capillary flow in porous media as a function of pore diameter and relative humidity at the surface. The present model was adopted by the numerical simulation of non-isothermal, non-homogenous flow in a shell and tube typed gas to gas membrane humidifier for PEMFC (proton exchange membrane fuel cell) and the result shows good agreement with experimental data.

  • PDF

Preparation and Characterization of PVA/SA Blend Nanofiltration membranes

  • Llee, Kew-Ho
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.86-92
    • /
    • 1999
  • The nanofiltration (NF) membranes based on poly(vinyl alcohol) (PVA) and sodium alginate (SA) were prespared. Homogeneous PVA/SA blend membranes were prepared by casting a PVA/SA (95/5 in wi%) mixture solution on an acryl plate followed by drying at a room temperature and by cros-slinking with glutaraldehyde (GA) for 20 minutes PVA/SA blend composite membranes were also prepared by coating a PVA/SA (95/5 in wi%) mixture solution on microporous polysulfone(PSF) supports. The PVA/SA active layer of the composite membrane was crosslinked at room temperature by using an membranes were characterized with a scanning electron microscopy (SEM) a fourier transform infrared spectroscopy (FTIR) and permeation tests. The permeation properties of the composite membrane were as follows: 1.3{{{{ {m }^{2 } }}}}/{{{{ {m }^{2 } }}}}day of flux and >95% of rejection at 200 psi for a 1000 ppm PEG600 solution.

  • PDF

A Study on the Pd-Ni Alloy Hydrogen Membrane using the Porous Nickel Metal Support (다공성 Ni 금속 지지체를 사용한 Pd-Ni 합금 수소 분리막 연구)

  • Kim Dong-Won;Um Ki-Youn;Kim Sang-Ho;Park Jong-Su
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.289-295
    • /
    • 2004
  • A dense palladium-nikel (Pd-Ni) alloy composite membrane has been fabricated on microporous nickel support mixed with submicron/micron nickel powder instead of mesoporous stainless steel support. Plasma treatment process is introduced as pre-treatment process instead of HCI activation. Pd-Ni alloy composite membrane prepared by electro plating was fairly a uniform and dense surface morphology. The membrane was characterized by permeation experiments with hydrogen and nitrogen gases at temperature 773 K and pressure 2.2 psi. The results showed that hydrogen ($H_2$) permeance was 27 ml/$\textrm{cm}^2$ㆍatmㆍmin and hydrogen/ nitrogen ($_H2$$N_2$) selectivity was 8 at 773 K.

Removal of reactive black 5 dye by using polyoxometalate-membrane

  • Topaloglu, Ali Kemal;Yildirim, Yilmaz
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • A POM-membrane was fabricated by immobilizing a keggin type polyoxometalate (POM) H5PV2Mo10O40 onto the surface of microporous flat-sheet polymeric polyvinylidene fluoride (PVFD) membrane using a chemical deposition method. The POM-membrane was characterized by FT-IR, SEM and EDX to confirm existing of the POM onto the membrane surface. The POM-membrane was used to remove an anionic textile dye (Reactive Black 5 named as an RB5) from aqueous phases with a cross-flow membrane filtration and a batch adsorption system. The dye removal efficiency of the POM-membrane using the cross-flow membrane filtration system and the batch adsorption system was about 88% and 98%, respectively. The influence factors such as contact time, adsorbent dosage, pH, and initial dye concentration were investigated to understand the adsorption mechanism of the RB5 dye onto the POM-membrane. To find the best fitting isotherm model, Langmuir, Freundlich, BET and Harkins-Jura isotherm models were used to analyze the experimental data. The isotherm analysis showed that the Langmuir isotherm model was found to the best fit for the adsorption data (R2 = 0.9982, qmax = 24.87 mg/g). Also, adsorption kinetic models showed the pseudo second order kinetic model was found the best model to fit the experimental data (R2 = 0.9989, q = 8.29 mg/g, C0 = 15 ppm). Moreover, after four times regeneration with HNO3 acid, the POM-membrane showed high regenerability without losing dye adsorption capacity.

Microporous Ceramic Membrane and Its Gas Separation Performance

  • Li, Lin;Li, Junhui;Qi, Xiwang
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.16-19
    • /
    • 1996
  • Separation with synthetic membrane have become increasingly important processes in many fields. In the most application of membrane process, polymer membrane is used. the main advantage of polymers as a material for membrane preparation is the relative simplicity of this film formation which enables one to obtain rather high permeability rates. However, polymeric membranes have several limitations, such as high temperature instability, swelling and decomposition in organic solvent, et. al.. These limitations can be overcome by inorganic membrane. At the present time, commercially available inorganic membranes have pore diameters ranging 5nm to 50mm, and the predominant flow regime in such membrane is Knudsen diffusion. Since the Knudsen permeability is directly proportional to the molecular velocity, gases can be separated due to their molecular masses. However, this separation mechanism is only of important for light gases such as H2 and He. Other separation mechanisms like surface diffusion, active diffusion can play an important role only with very small pore diameters(2nm) and give rise to large permselectivities. Therefore, preparation of inorganic membrane with nano-sized pore have been attracting more and more attention.

  • PDF