• Title/Summary/Keyword: micropolymer

Search Result 7, Processing Time 0.019 seconds

Controllability of White Pitch and Compatibility of Micropolymer on PEO/Cofactor Retention System and PAM/Bentonite Retention System (PEO/cofactor 보류 시스템과 PAM/bentonite 보류 시스템에서의 micropolymer 상용성과 백색 점착성 이물질 제어 효과)

  • Jung, Chul-Hun;Lee, Jin-Ho;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.6
    • /
    • pp.43-49
    • /
    • 2012
  • In this work, the non-ionic polyethylene oxide(PEO)/phenolic formaldehyde resin(PFR) retention system, which was less affected by furnish charge, was analyzed for possibility and effectiveness when using recycled stock. When the micropolymer was added at the PEO/PFR retention system and the PAM/bentonite retention system, performance of retention and drainage was improved. When the cationic micropolymer was added on the PEO/PFR retention system, the highest retention was achieved. The Polyacrylamide(PAM)/bentonite system induced flocculation of white pitch by electrostatic flocculation. On the other hand, the non-ionic PEO/PFR retention system induced less flocculation of white pitch than the PAM/bentonite retention system.

Performance of Cationic Guar Gums in Closed Papermaking Systems (고폐쇄화 제지공정에서의 양이온성 구아 검 활용 효과)

  • Ham, Choong-Hyun;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • The efficiency of retention systems including compozil-G, hydrocol, compozil-S, and micropolymer under highly closed papermaking system was evaluated using contaminated white waters prepared in the laboratory. Compozil-G and compozil-S performed better in retention than hydrocol and micropolymer systems. This suggested that stronger hydrogen bonding between fiber and guar gum or starch was formed to give stronger flocculation and better retention. Especially compozil-G outperformed compozil-S in retention, and this indicated the presence of stronger interaction between guar and cellulose fibers probably due to their similarity in chemical structure. Two compozil retention systems decreased the cationic demand and COD more effectively than hydrocol and microparticle systems. In particular, compozil-G that uses guar gum was highly effective in decreasing anionic trashes at low dosage.

Advanced Retention and Drainage Technology Offers Improved Performance and Operational Cost Savings

  • Freeman William L.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.239-243
    • /
    • 2006
  • Papermaking has changed remarkably during the past 20 years, creating huge pressures on retention and drainage programs. During this time, technology has advanced from single PAM flocculants to inorganic microparticle-based programs and then to micropolymer-based programs. In today's evolving fine paper market, retention and drainage programs have to meet increased demands in many areas, such as increased speed, GAP formers, dilution headboxes, higher ash levels, reduced furnish quality, lower cost, and increased machine efficiency. Hercules recently introduced a new technology that offers performance and stability improvements and operational cost savings as compared to existing advanced technologies. $PerForm(R)$ SP Advanced Retention and Drainage Technology consists of a family of products based on a structured organic particulate that offers papermakers the ultimate flexibility for management of wet end chemistry. This paper compares $PerForm(R)$ SP Advanced Retention and Drainage Technology to inorganic microparticle and micropolymer technologies and provides multiple case histories on machines that demonstrate the benefits of the technology. In these case histories, the PerForm SP is shown to provide improved retention and drainage that results in improved performance and operational cost savings to the mill.

  • PDF

New Micropolymer Technologies for Increased Drainage and Retention for both Wood and Non-Wood Containing Furnishes (목질 및 비목질 함유 지료의 탈수속도와 보류향상을 위한 새로운 마이크로폴리머 기술)

  • Lewis, Christopher;Polverari, Marco
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.05a
    • /
    • pp.1-46
    • /
    • 2008
  • The ability to control filler performance and fines retention is vital in the development of both filled and non filled grades, respectively. This is very important when achieving the desired sheet structure necessary to maximize machine performance and end user demands. A narrow balance exists in attaining the desired retention and formation particularly in systems with heavier ash loads and producing paper and paper board on higher speed high shear equipment. A new generation of both cationic and anionic micropolymer technologies has been developed. These water based chemistries are volatile organic compound (VOC) and alkyphenol ethoxylate (APE) free. When these novel micropolymers are applied with linear poly-acrylamide or in conjunction with inorganic microparticle technologies (such as silica or swellable minerals), substantial increases in drainage, fibre retention and ash retention are observed. These improvements have been observed not only in high filled wood and non wood containing grades such as fine paper and super calendared sheets (SCA), but also in low filled newsprint grades. Of particular note is the drainage improvement seen with the application of the cationic micropolymers in unbleached packaging grades with poly-acrylamide.

  • PDF

Exploration of retention system for papermaking system closure (제지공정의 무방류화를 위한 보류시스템 탐색)

  • 이학래;함충현;이지영;황남선;이상길;김종민
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.2
    • /
    • pp.1-7
    • /
    • 2001
  • Use of high yield pulp and recycled fiber as raw materials and water system closure result in higher fines content and buildup of organic and inorganic contaminants in white water. These are detrimental for the effectiveness of chemical additives including retention aids. Thus it is imperative to employ a retention systems that maintains its efficiency in closed papermaking system for reducing fresh water consumption. The performance of four different microparticle retention systems including cationic polyacrylamide (C-PAM)/bentonite, highly charged cationic starch (HCS)/silica, C-PAM/micropolymer, cationic guar gum (CGG)/silica was evaluated and compared at three different levels of papermaking system closure. Buildup of detrimental substances in a closed white water system increased cationic demand and finally reduced the performance of retention systems. Cationic starch and guar gums maintained their effectiveness in retention in closed white water systems contaminated with anionic trashes because of their structural rigidity and hydrogen bonding ability. Particularly, cationic guar gums, due its stiffness of molecular structure, appeared perform better than catinonic starch.

  • PDF

Telioform System A New Multi Component Organic/Inorganic System From Ciba Specialty Chemicals

  • Min, Byung-Jin;Lim, Kyung-Bin;Ford, Phil
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.11a
    • /
    • pp.57-70
    • /
    • 2006
  • Microparticle and micropolymer retention and drainage aid systems are powerful tools for paper and board making on a variety of machines. Drawbacks attributed to the current systems sometimes include; apparent high cost, production and quality problems and in some cases a negative effect on formation. The next generation multi-component organic/inorganic systems have demonstrated their ability to decouple the effects of retention and drainage and to improve the formation and print quality for the same retention and in some cases higher retention levels. It is now possible to optimize independently retention, drainage and formation effects with the same high return on investment of current microparticle systems.

  • PDF

Preparation and Application of ITO Hollow Spheres (Hollow ITO 제조법 및 응용)

  • Im, Jung-Sup;Hwang, Byung-Woo;Jung, Dong-Woon
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.102-107
    • /
    • 2012
  • Hollow ITO powders were prepared by using polystyrene powders as a template. The specific gravity of the prepared hollow ITO powders was less than half compared with that of normal ITO spheres. As a result, the mismatch between the specific gravity of ITO and that of polymer solution was reduced. When the prepared hollow ITO powders and the polymer solutions are mixed, some portion of the hollow particles were collapsed and generated lots of small fragments. Thousands of the broken fragments from hollow ITO powders caused the increased contact area between particles and finally resulted in the higher electrical conductivity for the coating solution made of the prepared hollow ITO powders and the polymer solution.