• 제목/요약/키워드: microorganism growth

검색결과 582건 처리시간 0.031초

고삼 추출액를 이용한 염색 면포의 염색성와 피부 미생물 억제효과 (The Dyeability and Antimicrobial Activity of Cotton Fabric Dyed with Sophora Radix Extracts on Skin Microorganisms)

  • 박선영;남윤자;김동현
    • 한국의류학회지
    • /
    • 제26권3_4호
    • /
    • pp.464-472
    • /
    • 2002
  • The aim of this study was to elucidate dyeability and antimicrobial activity of cotton fabrics dyed with Sophora Radix extracts according to various mordants. Dyes were extracted from Sophora Radix using ethanol. Then, cotton fabrics were dyed with extracts two times by post-mordanting method in which the extract was 60% (owf, the mordant was 3% (owf), L.R was 1:20, the temperature was 60~7$0^{\circ}C$, the time of dyeing was 60min., and the time of mordanting was 60min.. The dyeability was evaluated by surface color and color fastness. The skin microorganism was evaluated on S. sureus, B. subtilis, S. epidermidis, P. acnes, P. aeruginosa, E. coli, A. niger, C. albicans and T. mentagrophytes. The results are as follows; 1. When mordants were treated, surface color was 3.3Y to 0.1 GY in H (hue) value which indicated greenish yellow to yellow 2. The color fastness to perspiration, dry-cleaning, rubbing, and washing stain fabric showed 4~5 degree. The color fastness to light was improved to 4 degree by treatment of mordants. The color fastness to washing was 2 degree which was somewhat poor. 3. Cotton dyed with ethanol extracts was excellent on S. aureus, B. subtilis, S. epidermidis and p. antis. But that showed poor antibacterial activities on P. aeruginosa and E. coli such as gram negative baterials 4. Antibacterial activity of cotton fabrics dyed didn't be improved by treatment of mordant 5. Antifungal activity of cotton dyed with ethanol extracts was excellent on T. mentagrophytes. Especially, on T. mentagrophytes there was no growth of fungus during 72 hours in cotton dyed mordanting with SnCl$_2$.$_2$$H_2O$.

Cometabolism degradation of lignin in sequencing batch biofilm reactors

  • Kuang, Faguo;Li, Yancheng;He, Lei;Xia, Yongqiu;Li, Shubai;Zhou, Jian
    • Environmental Engineering Research
    • /
    • 제23권3호
    • /
    • pp.294-300
    • /
    • 2018
  • Cometabolism technology was employed to degrade lignin wastewater in Sequencing Batch Biofilm Reactor. Cometabolic system (with glucose and lignin in inflow) and the control group (only lignin in inflow) were established to do a comparative study. In contrast with the control group, the average removal rates of lignin increased by 14.7% and total oarganic carbon increased by 32% in the cometabolic system with glucose as growth substrate, under the condition of 5 mg/L DO, $0.2kgCOD/(m^3{\cdot}d)$ lignin and glucose $1.0kgCOD/(m^3{\cdot}d)$. Functional groups of lignin are degraded effectively in cometabolic system proved by fourier transform infrared spectroscopy and Gas Chromatography-Mass Spectrometer, and the degradation products were amides (mainly including acetamide, N-ethylacetamide and N, N-diethylacetamide), alcohols (mainly including glycerol and ethylene glycol) and acids. Meanwhile, results of Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis showed great differences in microbial population richness between cometabolic system and the control group. The Margalef's richness index and Shannon-Wiener's diversity index of microorganism in cometabolic system were 3.075 and 2.61, respectively. The results showed that extra addition of glucose, with a concentration of 943 mg/L, was beneficial to lignin biodegradation in cometabolic system.

Useful and Effective Diagnosis and Evaluation Tools for Eenvironmental Change in Increased Mill Water System Closure

  • Linda R. Robertson;Lee, Byung-Tae;Kim, Tae-Joon
    • 펄프종이기술
    • /
    • 제33권5호
    • /
    • pp.1-11
    • /
    • 2001
  • In the past, abundant and clean water was available for paper mills'use. However, the growth of population and industry made water less available nowadays. Also, environmental regulation limits wastewater discharge, which affects mill operation cost. Therefore, paper mills are under pressure to use more recycled water and mill system closure. As a result, chemical and physical parameters of water are changing and new environment if being created for microorganisms in paper mill system as well. The more soluble or suspended organic materials are increased as more water is recycled and less or scarce dissolved oxygen is available, depending on the degree of recycled water usage. Microorganism flora ill paper mill system will be a1so shifted according to the environmental change of mill system. Anaerobic bacteria, including sulfate reducing bacteria (SRB), will be dominant in the system as very low or almost no oxygen available in the system. Nevertheless, it is common in domestic paper mills that employ the same and old biocides as a means of microbial control, and microbiological control is often less recognized or even neglected. The right biocide selection for increased reductive environment of mills is critical for operation and estimated loss from paper quality defects such as sheet break, holes due to microbiological cause is tremendous compared to the microbiological control cost. It is imperative to investigate and diagnosis the environmental change of mills for right control of cumbersome microorganisms. Several useful diagnosis tools, including new technology employing OFM(Optical Fouling Monitor) in situ, are illustrated.

  • PDF

Bio-Sulfur Pre-Treatment Suppresses Anthracnose on Cucumber Leaves Inoculated with Colletotrichum orbiculare

  • Ko, Eun Ju;Shin, Yong Ho;Hyun, He Nam;Song, Hyo Soon;Hong, Jeum Kyu;Jeun, Yong Chull
    • Mycobiology
    • /
    • 제47권3호
    • /
    • pp.308-318
    • /
    • 2019
  • Bio-sulfur can be produced in the process of desulfurization from a landfill and collected by some microorganism such as Thiobacillus sp. as a sulfur element. In order to investigate practical use of bio-sulfur as an agent for controlling plant disease, in vitro antifungal activity of bio-sulfur was tested against Colletotrichum orbiculare known to cause cucumber anthracnose. Efficacy of bio-sulfur for suppressing anthracnose disease was also evaluated in vivo using cucumber leaves. Mycelial growth of C. orbiculare on medium containing bio-sulfur was inhibited. Disease severity of cucumber leaves pre-treated with bio-sulfur was significantly decreased compared to that of untreated ones. To illustrate how bio-sulfur could suppress anthracnose disease, structures of cucumber leaves infected with C. orbiculare were observed under a fluorescent microscope and a scanning electron microscope (SEM). Cucumber leaves pre-treated with bio-sulfur showed a low rate of appressorium formation whereas untreated ones showed abundant appressoria. Shrunk fungal hyphae were mostly observed on bio-sulfur-pretreated leaves by SEM. Similar results were observed on leaves pre-treated with a commercial fungicide Benomyl(R). These results suggest that inhibition of appressorium formation of C. orbiculare by bio-sulfur may contribute to its suppression of cucumber anthracnose.

반응표면분석법을 활용한 토양경작법에서 TPH 저감에 영향을 미치는 인자의 최적조건 도출 (Identification of Optimal Operation Factors for Landfarming using Response Surface Methodology)

  • 권잎새;이한욱;김진환;박재우
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권1호
    • /
    • pp.94-103
    • /
    • 2016
  • Landfarming that supplies aerobic biodegradation condition to indigenous microbes in soils is a biological remediation technology. In this research, volatilization and biodegradation rate by indigenous microbes in the soil contaminated with total petroleum hydrocarbons (TPH) were measured. Soils were contaminated with diesel artificially and divided into two parts. One was sterilized by autoclave to remove indigenous microorganism and the other was used as it was. Various moisture contents and number of tillings were applied to the soil to find out proper condition to minimize volatilization and enhance bioremediation. Volatilization of TPH was inhibited and biodegradation was enhanced by increase on moisture content. Tilling was usually used to supply air for microbes, but tillings did not affect the growth of microbes in our study. Enough moisture content and proper aeration are important to control volatilization in landfarming. Also, TPH degradation was a function of the microbe counts (x1), numbers of tilling (x2), and moisture content (x3) from the application of the response surface methodology. Statistical results showed the order of significance of the independent variables to be microbe counts > numbers of tilling > moisture content.

Natural Extracts as Inhibitors of Microorganisms and Lipid Oxidation in Emulsion Sausage during Storage

  • Lee, Jeeyeon;Sung, Jung-Min;Cho, Hyun Jin;Woo, Seung-Hye;Kang, Min-Cheol;Yong, Hae In;Kim, Tae-Kyung;Lee, Heeyoung;Choi, Yun-Sang
    • 한국축산식품학회지
    • /
    • 제41권6호
    • /
    • pp.1060-1077
    • /
    • 2021
  • Food additives are required to maintain the freshness and quality of foods, particularly meats. However, chemical additives may not be preferred by consumers, and natural materials with antimicrobial and antioxidant effects may be used as replacements for common chemical additives. Accordingly, in this study, we compared the antimicrobial and antioxidant activities of natural compounds extracted with ethanol and hot water, and emulsion sausage prepared with natural ethanol extracts was analyzed for pH, color, thiobarbituric acid reactive substances (TBARS), and Clostridium perfringens growth during storage. The antimicrobial activities of 49 natural extract candidates against Listeria monocytogenes, C. perfringens, Salmonella spp., and Escherichia coli were analyzed, and six natural materials with excellent antibacterial activities, i.e., Elaeagnus umbellata Thunb. f. nakaiana (Araki) H. Ohba, Punica granatum L., Ecklonia cava, Nelumbo nucifera Gaertner, and Schisandra chinensis (Turcz.) Baill., and Rubus coreanus Miq. were evaluated to determine their total polyphenol contents and DPPH radical scavenging activities. The total polyphenol contents of ethanol extracts were higher than those of hot water extracts, whereas DPPH radical scavenging activity was found to be higher in hot water extracts. The TBARS values of emulsion sausages were significantly increased as storage time increased, and the TBARS values of emulsion sausages prepared with natural extracts were lower than those of control sausages. Natural extract-treated emulsion sausages showed a 99% reduction in bacterial contents compared with untreated sausages on day 2, with greater than 99.9% reduction after day 3. Thus, these results demonstrated that natural extracts could have applications as natural preservatives in meat products.

Heat-Killed and Live Enterococcus faecalis Attenuates Enlarged Prostate in an Animal Model of Benign Prostatic Hyperplasia

  • Choi, Young-Jin;Fan, Meiqi;Tang, Yujiao;Iwasa, Masahiro;Han, Kwon-Il;Lee, Hongchan;Hwang, Ji-Young;Lee, Bokyung;Kim, Eun-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권8호
    • /
    • pp.1134-1143
    • /
    • 2021
  • In the present study, we investigated the inhibitory effect of heat-killed Enterococcus faecalis (E. faecalis) and live E. faecalis on benign prostatic hyperplasia (BPH). The BPH rat model was established by administering male rats with testosterone propionate (TP, 5 mg/kg, in corn oil) via subcutaneous injections daily for four weeks after castration. The rats were divided into five groups: Con, corn oil-injected (s.c.) + DW administration; BPH, TP (5 mg/kg, s.c.) + DW administration; BPH+K_EF, TP (5 mg/kg, s.c.) + heat-killed E. faecalis (7.5 × 1012 CFU/g, 2.21 mg/kg) administration; BPH+L_EF, TP (5 mg/kg, s.c.) + live E. faecalis (1 × 1011 CFU/g, 166 mg/kg) administration; BPH+Fi, TP (5 mg/kg, s.c.) + finasteride (1 mg/kg) administration. In both of BPH+K_EF and BPH+L_EF groups, the prostate weight decreased and histological changes due to TP treatment recovered to the level of the Con group. Both of these groups also showed regulation of androgen-signaling factors, growth factors, and apoptosis-related factors in prostate tissue. E. faecalis exhibited an inhibitory effect on benign prostatic hyperplasia, and even heat-killed E. faecalis showed similar efficacy on the live cells in the BPH rat model. As the first investigation into the effect of heat-killed and live E. faecalis on BPH, our study suggests that heat-killed E. faecalis might be a food additive candidate for use in various foods, regardless of heat processing.

Streptomycin-anionic linear globular dendrimer G2: Novel antibacterial and anticancer agent

  • Javadi, Sahar;Ardestani, Mehdi Shafiee
    • Advances in nano research
    • /
    • 제7권4호
    • /
    • pp.241-248
    • /
    • 2019
  • Recent researches demonstrated well promising anticancer activities for antibiotics. Such effects would be significantly increased while nanoparticle based delivery systems were applied. In this study, the goal was aim to improve anticancer and antitoxic effects of Streptomycin by loading on special kind of dendrimer (anionic-linear-globular second generation). In the current study, Size and zeta potential as well as AFM techniques have been used to prove the fact that the loading was performed correctly. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the drug loaded on dendrimer nanoparticle were determined and compared with both of dendrimer alone and free drug with respect to staphylococcus aureus as the test microorganism. The anticancer activity among three groups including Streptomycin, Streptomycin -G2 dendrimer, and control was measured in vitro. In vitro studies showed that G2 anionic linear-globular polyethylene-glycol-based dendrimer, which loaded on Streptomycin was able to significantly improve the treatment efficacy over clinical Streptomycin alone with respect to proliferation assay. Maximal inhibitory concentration (IC50) was calculated to be $257{\mu}g/mL$ for streptomycin alone and $55{\mu}g/mL$ for Streptomycin -G2 dendrimer. In addition, Streptomycin -G2 dendrimer conjugate prevented the growth of MCF-7 cancerous cells in addition to enhance the number of apoptotic and necrotic cells as demonstrated by an annexin V-fluorescein isothiocyanate assay. Streptomycin -G2 dendrimer conjugate was able to increase Bcl-2/Bax ratio in a large scale compared with the control group and Streptomycin alone. Based on results a new drug formulation based nano-particulate was improved against S. aureus with sustained release and enhanced antibacterial activity as well as anticancer activity shown for functional cancer treatment with low side effects.

밀리미터파 처리가 청국장의 이화학적 특성에 미치는 영향 (Effect of Millimeter Waves on Quality Characteristics of Cheonggukjang)

  • 서동호;김미선;금준석
    • 산업식품공학
    • /
    • 제21권2호
    • /
    • pp.126-131
    • /
    • 2017
  • 결론적으로 밀리미터파를 청국장 발효시 60 GHz와 70 GHz로 조사하였을 때, 청국장 총균수에는 대조구와 차이가 나타나지 않았지만, 청국장 점질물의 함량과 pH는 대조구에 비하여 낮게 나타났다. 밀리미터파는 청국장의 색도에 영향을 미치는 것을 확인하였으며, 청국장에 존재하는 가수분해효소들에 영향을 주어 생성되는 주파수에 따라 가수분해 산물에 차이가 나타남을 확인하였다. 특히 70 GHz에서는 청국장 발효에 중요한 단백질 분해효소의 활성이 크게 증가였으며, 이를 통하여 70 GHz 밀리미터파 조사 청국장은 아미노태 질소 함량와 총 아미노산 함량이 증가하였다. 청국장 발효 중 70 GHz의 밀리미터파 조사하면 기존과 다른 청국장의 풍미를 기대할 수 있다.밀리미터파는 청국장 발효시 균의 생장에는 영향을 미치진 않으나, 최종 청국장의 품질특성에는 영향을 미치는 것을 확인하였다. 이는 밀리미터파가 발효식품에 새로운 품질을 부여 할 수 있는 신기술이라 할 수 있다.

생활하수에서 분리된 Bacillus licheniformis의 인 제거에 대한 환경적인 인자의 영향 (Impact of Environmental Factors on Phosphorus Removal of Bacillus licheniformis Isolated from Domestic Sewage)

  • 한석순;박상욱;김덕원;박지수;오은지;유진;김덕현;정근욱
    • 한국환경과학회지
    • /
    • 제30권2호
    • /
    • pp.161-172
    • /
    • 2021
  • This study was initiated to isolate the microorganisms removing phosphorus (P) from domestic sewage and to investigate the effects of environmental factors on the growth and P removal of the isolated bacteria. Microorganisms isolated from the sewage were identified as Chryseobacterium sp., Stenotrophomonas maltophilia, and Bacillus licheniformis. Among them, Bacillus licheniformis was selected as the P removal microorganism. The environmental factors considered in this study included initial phosphorus concentration, temperature, pH, and carbon source. At initial P concentrations of 10, 20, and 30 mg/L, the P removal efficiencies were 100.0%, 84.0%, and 16.5%, respectively. At 20℃, 30℃, and 40℃, the P removal efficiencies were 0%, 75.8%, and 60.6%, respectively. The removal efficiencies of phosphorus according to pH were 1.6%, 91.7%, and 51.1% at pH 5, pH 7, and pH 9, respectively. Using glucose, acetate, and glucose + acetate as carbon sources yielded P removal efficiencies of 80.9%, 33.6%, and 54.1%, respectively. Therefore, the results from the study demonstrated that the P removal efficiencies of Bacillus licheniformis were the highest when the initial P concentration, temperature, pH, and carbon source were 10 mg/L, 30℃, 7, and glucose, respectively.