• Title/Summary/Keyword: micromechanical parameters

Search Result 42, Processing Time 0.022 seconds

On thermally induced instability of FG-CNTRC cylindrical panels

  • Hashemi, Razieh;Mirzaei, Mostafa;Adlparvar, Mohammad R.
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.43-57
    • /
    • 2021
  • In this study, thermally induced bifurcation buckling of shallow composite cylindrical panels reinforced with aligned single-walled carbon nanotubes is investigated. Distribution of carbon nanotubes across the thickness of the cylindrical panel as reinforcements may be either uniform or functionally graded. Thermo-mechanical properties of the matrix and reinforcements are considered to be temperature dependent. Properties of the cylindrical panel are obtained using a refined micromechanical approach which introduces the auxiliary parameters into the rule of mixtures. The governing equations are obtained by using the static version of the Hamilton principle based on the first-order shear deformation theory and considering the linear strain-displacement relation. An energy-based Ritz method and an iterative process are used to obtain the critical buckling temperature of composite cylindrical panel with temperature dependent material properties. In addition, the effect of various parameters such as the boundary conditions, different geometrical conditions, distribution pattern of CNTs across the thickness and their volume fraction are studied on the critical buckling temperature and buckled pattern of cylindrical panels. It is shown that FG-X type of CNT dispersion is the most influential type in thermal stability.

Thermoelastic deformation behavior of functionally graded cylindrical panels with multiple perforations

  • Shyam K. Chaudhary;Vishesh R. Kar;Karunesh K. Shukla
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.2
    • /
    • pp.127-140
    • /
    • 2023
  • The present article focuses on the thermoelastic deformation behavior of inhomogeneous functionally graded metal/ceramic cylindrical shell structure with multiple perforations using 2D finite element approximation. Here, cylindrical shell structure is considered with single (1×1) and multiple (2×2, 3×3 and 4×4) perforations. The temperature-dependent elastic and thermal properties of functionally graded material are evaluated using Voigt's micromechanical material scheme via power-law function. The kinematics of the proposed model is based on the equivalent single-layer first-order shear deformation mid-plane theory with five degrees-of-freedom. Here, 2D isoparametric finite element solutions are obtained using eight-node quadrilateral elements. The mesh refinement of present finite element model is performed to confirm the appropriate number of elements and nodes for the analysis purpose. Subsequently, a comparison test is conducted to demonstrate the accuracy of present results. In later section, numerous numerical illustrations are demonstrated at different set of conditions by varying structural, material and loading parameters and that confirms the significance of various parameters such as power-law index, aspect ratio, thickness ratio, curvature ratio, number of perforations and temperature on the deformation characteristics of functionally graded cylindrical shell structure.

Elastic-plastic Micromechanics Modeling of Cross-anisotropic Granular Soils: I. Formulation (직교 이방적 사질토의 미시역학적 탄소성 모델링: I. 정식화)

  • Jung, Young-Hoon;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.77-88
    • /
    • 2007
  • A micromechanics-based model to simulate the elastic and elastic-plastic behavior of granular soils is developed. The model accounts for the fabric anisotropy represented by the statistical parameter of the spatial distribution of contact normals, the evolution of fabric anisotropy as a function of stress ratio, the continuous change of the co-ordination number relating to the void ratio, and the elastic and elastic-plastic microscopic contact stiffness. Using the experimental data for metallic materials, the elastic-plastic contact stiffness is derived as a power function of the normal contact force as well as the contact force initiating the yielding of contact bodies. To quantitatively assess microscopic model parameters, approximate solutions of cross-anisotropic elastic moduli are derived in terms of the micromechanical parameters.

Nonlinear flexural analysis of laminated composite flat panel under hygro-thermo-mechanical loading

  • Kar, Vishesh R.;Mahapatra, Trupti R.;Panda, Subrata K.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.1011-1033
    • /
    • 2015
  • In this article, large amplitude bending behaviour of laminated composite flat panel under combined effect of moisture, temperature and mechanical loading is investigated. The laminated composite panel model has been developed mathematically by introducing the geometrical nonlinearity in Green-Lagrange sense in the framework of higher-order shear deformation theory. The present study includes the degraded composite material properties at elevated temperature and moisture concentration. In order to achieve any general case, all the nonlinear higher order terms have been included in the present formulation and the material property variations are introduced through the micromechanical model. The nonlinear governing equation is obtained using the variational principle and discretised using finite element steps. The convergence behaviour of the present numerical model has been checked. The present proposed model has been validated by comparing the responses with those available published results. Some new numerical examples have been solved to show the effect of various parameters on the bending behaviour of laminated composite flat panel under hygro-thermo-mechanical loading.

Nanotechnology, smartness and orthotropic nonhomogeneous elastic medium effects on buckling of piezoelectric pipes

  • Mosharrafian, Farhad;Kolahchi, Reza
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.931-947
    • /
    • 2016
  • The effects of nanotechnology and smartness on the buckling reduction of pipes are the main contributions of present work. For this ends, the pipe is simulated with classical piezoelectric polymeric cylindrical shell reinforced by armchair double walled boron nitride nanotubes (DWBNNTs), The structure is subjected to combined electro-thermo-mechanical loads. The surrounding elastic foundation is modeled with a novel model namely as orthotropic nonhomogeneous Pasternak medium. Using representative volume element (RVE) based on micromechanical modeling, mechanical, electrical and thermal characteristics of the equivalent composite are determined. Employing nonlinear strains-displacements and stress-strain relations as well as the charge equation for coupling of electrical and mechanical fields, the governing equations are derived based on Hamilton's principal. Based on differential quadrature method (DQM), the buckling load of pipe is calculated. The influences of electrical and thermal loads, geometrical parameters of shell, elastic foundation, orientation angle and volume percent of DWBNNTs in polymer are investigated on the buckling of pipe. Results showed that the generated ${\Phi}$ improved sensor and actuator applications in several process industries, because it increases the stability of structure. Furthermore, using nanotechnology in reinforcing the pipe, the buckling load of structure increases.

Experimental study of Kaiser effect under cyclic compression and tension tests

  • Chen, Yulong;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.203-209
    • /
    • 2018
  • Reliable estimation of compressive as well as tensile in-situ stresses is critical in the design and analysis of underground structures and openings in rocks. Kaiser effect technique, which uses acoustic emission from rock specimens under cyclic load, is well established for the estimation of in-situ compressive stresses. This paper investigates the Kaiser effect on marble specimens under cyclic uniaxial compressive as well as cyclic uniaxial tensile conditions. The tensile behavior was studied by means of Brazilian tests. Each specimen was tested by applying the load in four loading cycles having magnitudes of 40%, 60%, 80% and 100% of the peak stress. The experimental results confirm the presence of Kaiser effect in marble specimens under both compressive and tensile loading conditions. Kaiser effect was found to be more dominant in the first two loading cycles and started disappearing as the applied stress approached the peak stress, where felicity effect became dominant instead. This behavior was observed to be consistent under both compressive and tensile loading conditions and can be applied for the estimation of in-situ rock stresses as a function of peak rock stress. At a micromechanical level, Kaiser effect is evident when the pre-existing stress is smaller than the crack damage stress and ambiguous when pre-existing stress exceeds the crack damage stress. Upon reaching the crack damage stress, the cracks begin to propagate and coalesce in an unstable manner. Hence acoustic emission observations through Kaiser effect analysis can help to estimate the crack damage stresses reliably thereby improving the efficiency of design parameters.

Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Yahya, Yahya Zakariya;Barati, Mohammad Reza;Jayasimha, Anirudh Narasimamurthy;Khan, Imran
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.283-291
    • /
    • 2020
  • The present paper researches post-buckling behaviors of geometrically imperfect concrete beam resting on elastic foundation reinforced with graphene oxide powders (GOPs) based on finite element method (FEM). Distribution of GOPs are considered as uniform and linearly graded through the thickness. Geometric imperfection is considered as first buckling mode shape of the beam, the GOP reinforced beam is rested in initial position. The material properties of GOP reinforced composite have been calculated via employment of Halpin-Tsai micromechanical scheme. The provided refined beam element verifies the shear deformation impacts needless of any shear correction coefficient. The post-buckling load-deflections relations have been calculated via solving the governing equations having cubic non-linearity implementing FEM. Obtained findings indicate the importance of GOP distributions, GOP weight fraction, matrix material, geometric imperfection, shear deformation and foundation parameters on nonlinear buckling behavior of GOP reinforced beam.

Interfacial and Durability Evaluation of Jute and Hemp Fiber/Polypropylene Composites Using Micromechanical Test and Acoustic Emission (미세역학적시험법과 음향방출을 이용한 Jute 및 Hemp 섬유/폴리프로필렌 복합재료의 내구성 및 계면 평가)

  • Kim, Pyung-Gee;Jang, Jung-Hoon;Kim, Sung-Ju;Hwang, Byung-Sun;Park, Joung-Man
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.55-62
    • /
    • 2007
  • Interfacial evaluation and durability of Jute and Hemp fibers/polypropylene (PP) composites were investigated. Moisture content of various treated conditions were measured by thermogravimetic analyzer (TGA). After boiling water test, mechanical properties and IFSS between Jute, Hemp fibers and PP matrix decreased. On the other hand, work of adhesion increased due to swelled fibril by water. Surface energies of Jute and Hemp fibers before and after boiling water test were obtained using dynamic contact angle measurement. IFSS was not always consistent with thermodynamic work of adhesion. In boiling water case, since Jute and Hemp fibers could be swelled by water, surface area and moisture infiltration space increased. Environmental effect on microfailure modes of Jute or Hemp fibers and Jute or Hemp fibers/PP composites were obtained by observing via optical microscope and by monitoring acoustic emission (AE) events and their AE parameters. After boiling water test, unlike Hemp fiber, microfailure process of Jute fiber could occur due to low tensile strength by swelled fibril. In addition, AE events occurred more and AE amplitude and energy became lower than those of before boiling water test.

Micromechanical Model for the Consolidation Behavior in SiC-Ti Metal Matrix Composites (SiC-Ti금속기 복합재료의 강화거동에 관한 미시역학적 모델)

  • 김준완;김태원
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.1-8
    • /
    • 2003
  • Densification occurs by the inelastic flow of the matrix materials during the consolidation processes at high temperature for MMCs, and the results depend on many process conditions such as applied pressure, temperature and volume fraction of fiber and matrix materials. This is particularly important in titanium matrix composites since material failure may occur by either the applied conditions or microstructural parameters through the processes, and thus a generic model based on micro-mechanical approaches enabling the evolution of density over time to be predicted has been developed. The mode developed is then implemented into FEM so that practical process simulation has been carried out. Further the experimental investigation of the consolidation behavior of SiC/Ti-6Al-4V composites using vacuum hot pressing has been performed, and the results obtained are compared with the model predictions.

Elastic-plastic Micromechanics Modeling of Cross-anisotropic Granular Soils: II. Micromechanics Analysis (직교 이방적 사질토의 미시역학적 탄소성 모델링: II. 미시역학적 해석)

  • Jung, Young-Hoon;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.89-100
    • /
    • 2007
  • In the companion paper, we provided the novel elastic-plastic constitutive model based on the micromechanics theory. Herein, the elastic and elastic-plastic deformation of granular soils is meticulously analyzed. To guarantee high accuracy of the microscopic parameter, the systematic procedure to evaluate the parameters is provided. The analysis of the elastic response during the isotropic and triaxial compression shows that the stress-level dependency of cross-anisotropic elastic moduli is induced by the power relationship of the contact force in the normal contact stiffness, while the evolution of fabric anisotropy is more pronounced during triaxial compression. The micromechanical analysis indicates that the plastic strains are likely to occur at very small strains. The plastic deformation of tangential contacts has an important role in the reduction of soil stiffness during axial loading.