• Title/Summary/Keyword: microhardness

Search Result 650, Processing Time 0.022 seconds

Microstructure and Corrosion Properties of AZ91D Magnesium Alloy treated by Plasma Electrolytic Oxidation (플라즈마 전해 산화 처리한 AZ91D 마그네슘합금 피막의 미세조직 및 부식 특성)

  • Chang, Si-Young;Kim, Ye-Lim;Kim, Yang-Do
    • Journal of Korea Foundry Society
    • /
    • v.28 no.1
    • /
    • pp.20-24
    • /
    • 2008
  • The characteristics, such as roughness, thickness, microhardness and corrosion resistance, of plasma electrolytic oxide coatings on AZ91D alloy were investigated under the processing condition of various coating times. The coatings on AZ91D alloy consisted of MgO, $MgAl_{2}O_{4}$ and $Mg_{2}SiO_{4}$ oxides. The surface roughness and thickness of coatings became larger with increasing the coating time. The microhardness in cross section of coatings was much higher than not only that in surface but that in the conventional anodic oxide coatings, which increased progressively as the coating time increased. After being immersed in 3.5%NaCl solution and methyl alcohol, the corrosion resistance of AZ91D alloy was markedly improved by plasma electrolytic oxidation coating treatment, and the AZ91D alloy coated for 50min revealed excellent corrosion resistance.

MICROHARDNESS OF ESTHETIC RESTORATIVE MATERIALS CURED BY 3 TYPES OF NARROW-BANDED WAVELENGTH (중합가시광 파장대에 따른 심미성 수복재의 미세경도 변화)

  • 김현철;조경모;신동훈
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.2
    • /
    • pp.127-133
    • /
    • 2001
  • There are several factors affecting the effectiveness of polymerization of the esthetic restorative materials. Among those factors, the initiator. camphoroquinone has the unique characteristic. of which the light sensitivity is very dependent on the wavelength of blue light. Camphoroquinone shows the most light absorption ability in the wavelength range of 470nm. So most of clinically used light curing systems adopt this phenomenon as their polymerization mechanism. The most popular way of light curing system is standard 40 second curing. But the problem of standard curing technique shows the rapid increase of resin viscosity followed by the acceleration of polymerization and the limited resin flow, resulted in reduction of the physicalproperty of restoration by retained stress. The object of this study was to verify the effects of narrow-banded wavelength on the microhardness of the esthetic restorative materials. a composite resin and a compomer, using filters which have peak wave length of 430nm, 450nm, 470nm, respectively. The results were as follows: 1. All the experimental groups showed lower hardness value than the control group. 2. In DyractAP, the hardness value by wavelength showed the same changing pattern on both upper and lower surfaces. 3. In DenFil, the hardness value by wavelength showed different changing pattern on upper and lower surfaces. 4. The hardness ratio showed similar pattern to the hardness variation of lower surface. but there was no significant difference between measurement in 10 minutes and 3 days later, besides the increase of hardness value.

  • PDF

POLYMERIZATION ABILITY OF SEVERAL LIGHT CURING SOURCES ON COMPOSITE RESIN (광원에 따른 중합광의 복합레진 중합 능력 비교)

  • Shin, Hye-Jin;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.2
    • /
    • pp.156-161
    • /
    • 2003
  • The purpose of this study is to evaluate the polymerization ability of three different light sources by microhardness test. Stainless steel molds of 1, 2, 3, 4 and 5 mm in thickness of 7 mm in diameter were prepared. The hybrid composite Z100 was packed into the hole of the mold and curing light was activated for designated time. Three different light sources, conventional halogen, light emitting diode, and plasma arc, were used for curing of composite. Two different curing times applied ; one is to follow the manufacturers recommendation and the other is to extend the curing time of LED and plasma arc for balancing the light energy with halogen. Immediately after curing, the Vickers hardness was measured at the bottom of specimen. The results were as follows. 1 The composite cured with LED showed equal to higher microhardnesss than halogen. 2. The composite was cured with plasma arc by manufacturers recommendation showed lowest micro-hardness at all thickness. However, when curing time was extended, microhardness was higher than the others. In conclusion, this study suggested that plasma arc needs properly extended curing time.

Study on the Effect of Sputtering Process on the Adhesion Strength of CrZrN Films Synthesized by a Duplex Surface Treatment Process (복합표면처리된 CrZrN 박막의 밀착력에 미치는 스퍼터링 효과에 관한 연구)

  • Kim, M.K.;Kim, E.Y.;Lee, S.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.268-275
    • /
    • 2006
  • In this study, effect of sputtering on the plasma-nitriding substrate and before PVD coating on the microstucture, microhardness, surface roughness and the adhesion strength of CrZrN thin films were investigated. Experimental results showed that this sputtering process not only removed surface compound layer which formed during a plasma nitriding process but also induced an alteration of the surface of plasma nitrided substrate in terms of microhardness distribution, surface roughness. This in turn affected the adhesion strength of PVD coatings. After sputtering, microhardness distribution showed general decrease and the surface roughness became increased slightly. The critical shear stress measured from the scratch test on the CrZrN coatings showed an approximately 1.4 times increase in the adhesion strength through the sputtering prior to the coating and this could be attributed to a complete removal of compound layer from the plasma nitrided surface and to an increase in the surface roughness after sputtering.

Effects of Chemical Vapor Deposition Parameters on The Hardness and the Structural Characteristics of TiN Film (TiN피막의 경도 및 구조적 특성에 미치는 화학증착 조건의 영향)

  • Shin, Jong-Hoon;Lee, Seong-Rae;Baek, Young-Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.20 no.3
    • /
    • pp.106-117
    • /
    • 1987
  • The microhardness and the structural characteristics of the chemically vapor deposited TiN film on the 430 stainless steel substrate have been investigated with various deposition parameters such as the deposition time, the total flow rate, the flow rate ratio $(H_2/N_2)$, and the deposition temperature. The most important factor to affect the microhardness of the TiN film in this study was the denseness of the structure in connection with the degree of the lattice strain. The relationship between the lattice parameter changes and the grain size variation under all deposition conditions generally followed the grain boundary relaxation model. The (111) preferred orientation prevailed in the early stage of the deposition conditions, however, the (200) preferred orientation was developed in the later stage. The surface morphology at optimum conditions displayed a dense diamond shaped structure and the microhardness of the films was high (1700-2400Hv) regardless of the type of the substrates used.

  • PDF

Pulse electrodeposition and characterization of Ni-$TiO_2$ nano composite coatings

  • Cho, Sung-Hun;Gyawali, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.153-153
    • /
    • 2011
  • Ni $TiO_2$ nano composite coatings were fabricated by using pulse current electrodeposition technique at 100 Hz pulse frequency with a constant 50% pulse duty cycles and reference was taken with respect to the direct current electrodeposition. The properties of the composite coatings were investigated by using SEM, XRD, Wear test and Vicker's microhardness test. XRD patterns of pulse deposited composite coatings were found to be changed from preferred (100) orientation to the random mixed orientations. The results demonstrated that the Vickers microhardness of composite coatings under pulse condition was significantly improved than that of pure nickel coating as well as direct current electrodeposited Ni-$TiO_2$ composite coatings. Wear tracks have shown the less plastic deformation at pulse condition with reduced coefficient of friction. Nickel matrix grain size was also found to be lower in pulse plated composite coatings as compared to direct current electrodeposited composite coatings.

  • PDF

Rapidly Solidified Microstructure and Phase Decomposition of Al-Cr alloys by the Single Roller Method (Single Roller법에 의한 Al-Cr 계 합금의 급냉응고 조직과 상분해)

  • Cho, Soon-Hyoung;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.7 no.2
    • /
    • pp.108-113
    • /
    • 1987
  • Al-Cr alloy with composition in the range from 1.5 wt% to 10 wt% Cr were rapidly solidified from the melt by the single roller method. The supersaturated solid solution was obtained up to 6 wt% Cr in Al-Cr alloy for $20{\mu}m$ thickness. Lattice parameter decreased with increasing Cr content at the rate of 0.00456A per wt% Cr up to 6 wt% Cr. Microhardness increased with increasing Cr content at the rate of $10\;Kg/mm^2$ per wt% Cr up to 6 wt% Cr. Microhardness measurements on the Al-6 wt% Cr supersaturated solid solution annealed isothermally showed no sign of age hardening. Decomposition temperature, determined by lattice parameter changes and microhardness changes, was $470^{\circ}C$ for Al-6 wt% Cr supersaturated solid solution. Transmission electron microscopy showed that decomposition within one hour below $400^{\circ}C$ occurred at grain boundaries only, and also the additional decomposition within grains being evident at $450^{\circ}C$ The coarse precipitate structure showed at $500^{\circ}C$ and $550^{\circ}C$, respectively. The coarse precipitate structure is considered $Al_7Cr$.

  • PDF

Study on the Effect of Sputtering Process on the Adhesion Strength of CrN Films Synthesized by a Duplex Surface Treatment Process (복합표면처리된 CrN박막의 밀착력에 미치는 스퍼터링 효과에 관한 연구)

  • Kim M.K.;Kim E.Y.;Kim J.T.;Lee S.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • In this study, effect of sputtering after plasma nitriding and before PVD coating on the microstucture, microhardness, surface roughness and the adhesion strength of CrN thin films were investigated. Experimental results showed that this sputtering process not only removed surface compound layer which formed during a plasma nitriding process but also induced an alteration of the surface of plasma nitrided substrate in terms of microhardness distribution and surface roughness, which in turn affected the adhesion strength of PVD coatings. After sputtering, microhardness distribution showed general decrease and the surface roughness became increased slightly. The critical shear stress measured from the scratch test on the CrN coatings showed an approximately twice increase in the binding strength through the sputtering prior to the coating and this could be attributed to a complete removal of compound layer from the plasma nitrided surface and to an increase in the surface roughness after sputtering.

Enhancement of Wear Resistance of CoCrNiAlTi Plasma Sprayed Coatings Using Titanium Carbide

  • De-Yong Li;Chul-Hee Lee
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • Large drill bits may face high hardness ore and high working pressure when working. To optimize the use effect of large drill bits and prolong the use time, it is necessary to add a layer of pressure-resistant, wear-resistant, and low-friction coating on the surface of the drill bit. In this study, CoCrNiAlTi high-entropy alloy coatings and CoCrNiAlTi (70 wt%)-TiC (30 wt%) composite coatings are successfully prepared on Q235 steel by plasma spraying. The CoCrNiAlTi (70 wt%)-TiC (30 wt%) coating consists of FCC solid solution and a small amount of TiC phase. The effect of TiC on the composition phase, microhardness, and elastic modulus of HEA coating is studied by X-ray diffractometer (XRD) and microhardness tester. The effect of TiC on the friction and wear properties of HEA coatings is investigated using a wear tester. By improving the process parameters, the metallurgical bonding between the coating and the substrate is well combined, and a coating without pores and cracks is obtained. The experimental results confirm that the microhardness, elastic modulus, and wear resistance of CoCrNiAlTi-TiC composite coating are better, and the friction coefficient is lower.

Effect of Commercial Effervescent Vitamin Tablets on Bovine Enamel

  • Jeong, Moon-Jin;Lee, Myoung-Hwa;Jeong, Soon-Jeong;Kim, So-Jeong;Ko, Myeong-Ji;Sim, Hye-Won;Lee, Ju-Young;Im, Ae-Jung;Lim, Do-Seon
    • Journal of dental hygiene science
    • /
    • v.19 no.4
    • /
    • pp.261-270
    • /
    • 2019
  • Background: In this study, four types of effervescent vitamins marketed in Korea were analyzed for their acidity and vitamin content. For this purpose, bovine teeth were immersed in vitamin, and surface microhardness and appearance were measured before and after immersion to evaluate tooth demineralization and erosion. Methods: Bovine permanent incisors with sound surface enamel were cut to 5×5 mm size, embedded in acrylic resin, and polished using a polishing machine with Sic-paper. The prepared samples were analyzed for pH, vitamin content, and surface hardness before and after immersion using a surface microhardness meter. Demineralization of surface dental enamel was observed using a scanning electron microscope. Results: The average pH of the four effervescent vitamins was less than 5.5; the pH of the positive control Oronamin C was the lowest at 2.76, while that of the negative control Samdasoo was the highest at 6.86. The vitamin content was highest in Berocca and lowest in the DM company Multivitamin. On surface microhardness analysis, surface hardness values of all enamel samples were found to be decreased significantly after 1 and 10 minutes of immersion (p<0.05). After 10 minutes of immersion, there was a significant difference in the decrease in hardness between the experimental groups (p<0.05). Scanning electron microscopy observation showed that dental enamel demineralization after 10 minutes of immersion was the most severe in Oronamin C except for Samdasoo, followed by DM company Multivitamin and VitaHEIM. Immersion in BeroNew and Berocca resulted in similar effects. Conclusion: There is a risk of tooth erosion due to decreased tooth surface microhardness when using the four types of effervescent vitamins and vitamin carbonated beverages with pH below 5.5. Therefore, high pH vitamin supplements are recommended to prevent tooth erosion.