• Title/Summary/Keyword: microgrid

Search Result 343, Processing Time 0.046 seconds

Talmudic Approach to Load Shedding of Islanded Microgrid Operation Based on Multiagent System

  • Kim, Hak-Man;Kinoshita, Tetsuo;Lim, Yu-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.284-292
    • /
    • 2011
  • This paper presents a load-shedding scheme using the Talmud rule in islanded microgrid operation based on a multiagent system. Load shedding is an intentional load reduction to meet a power balance between supply and demand when supply shortages occur. The Talmud rule originating from the Talmud literature has been used in bankruptcy problems of finance, economics, and communications. This paper approaches the load-shedding problem as a bankruptcy problem. A load-shedding scheme is mathematically expressed based on the Talmud rule. For experiment of this approach, a multiagent system is constructed to operate test islanded microgrids autonomously. The suggested load-shedding scheme is tested on the test islanded microgrids based on the multiagent system. Results of the tests are discussed.

A Study on the PSCAD/EMTDC Simulation Model of Battery Energy Storage with Simplified Battery Model and IUIa Charging Method (간략화된 배터리 모델이 적용된 IUIa 충전 방식의 에너지 저장장치의 PSCAD/EMTDC 시뮬레이션 모델에 관한 연구)

  • Kim, Sung-Hyun;Lee, Kye-Byung;Hong, Jun-Hee;Son, Kwang-Myung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.84-90
    • /
    • 2010
  • In order to level electric power of the photovoltaic and wind-turbine system and ensure fast response of the fuel-cell and micro-turbine, the energy storage is required in the microgrid system. In this paper, a simplified simulation model of the battery energy storage for charging method with IUIa is developed using PSCAD/EMTDC. The model consists of e.m.f.(electromotive force), internal resistor and overvoltage capacitor. A method for deciding parameters of the model on a case-by-case basis is proposed. The developed model can be used in the simulation of a complicated system such as a microgrid system.

A Seamless Control Method for Supercapacitor to Compensate Pulsed Load in DC Microgrid (직류 마이크로그리드에서 펄스형 부하 보상용 슈퍼커패시터 무순단 제어법)

  • Dam, Hung D.;Lee, Hong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.265-272
    • /
    • 2018
  • This paper proposes a new control method for the supercapacitor (SC) to compensate the pulsed load and to enhance the power quality of the DC microgrid. By coordinating the operating frequency, the SC is controlled to handle the surge current, while the low-frequency current component is dealt with by the remaining sources in the system. The operation mode of the SC unit is automatically changed based on the state of charge and DC bus voltage level. Meanwhile, the mismatch in the power demand is covered by the SC unit by regulating the DC bus voltage level. The effectiveness of the proposed method is verified experimentally by the prototype with two distributed generators and one SC unit.

Islanding detection algorithm for microgrid considering reactive power (무효전력을 고려한 마이크로그리드의 단독운전 판단 알고리즘)

  • Kang, Yong-Cheol;Jang, Sung-Il;Cha, Sun-Hee;Lee, Byung-Eun;Kim, Yeon-Hee;Lee, Ji-Hoon;Kim, Yong-Guen
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.236-237
    • /
    • 2006
  • A microgrid is a new type of power system which is formed by the interconnection of small generator to distribution systems. Microgrids are able to supply electric power to their loads independently, which is called with islanding operation, even if they're separated from the power system. As a result, microgrids must be equipped with specific islanding detection schemes for the islanding operation of microgrids. This paper studies an islanding detection method considering reactive power. The proposed method is dealing with the reactive power of the cable which connects between a microgrid and a power system. To show the validity of the proposed method, many islanding operation cases are tested by varying the load conditions of microgrids.

  • PDF

A Control and Protection Model for the Distributed Generation and Energy Storage Systems in Microgrids

  • Ballal, Makarand Sudhakar;Bhadane, Kishor V.;Moharil, Ravindra M.;Suryawanshi, Hiralal M.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.748-759
    • /
    • 2016
  • The microgrid concept is a promising approach for injecting clean, renewable, and reliable electricity into power systems. It can operate in both the grid-connected and the islanding mode. This paper addresses the two main challenges associated with the operation of a microgrid i.e. control and protection. A control strategy for inverter based distributed generation (DG) and an energy storage system (ESS) are proposed to control both the voltage and frequency during islanding operation. The protection scheme is proposed to protect the lines, DG and ESS. Further, the control scheme and the protection scheme are coordinated to avoid nuisance tripping of the DG, ESS and loads. The feasibility of the proposed method is verified by simulation and experimental results.

Stability Analysis Using G-Parameters of Converters Constituting DC Microgrid and Stability Enhancement Through Virtual Impedance (G-parameter를 이용한 직류 마이크로그리드의 컨버터 상호 안정도 분석 및 가상 임피던스를 이용한 안정도 향상)

  • Lee, Jae-Suk;Lee, Gi-Young;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.321-327
    • /
    • 2018
  • DC microgrid system composed of multiple converters has a tendency to make the system unstable due to the interaction of converters. To solve this problem, in this paper, the interaction between cascaded converters with LC input filter is analyzed with impedance modeling using g-parameter. The input impedance and the output impedance of the system can be obtained through this technique. The stability of the system can be determined by applying Middlebrook's stability criterion to the impedance. Virtual impedance is added to the controller to enhance stability. The validity of the analysis is verified by the result of several simulations and experiments.

Control of Islanded Microgrid Using Fuzzy Logic (Fuzzy Logic을 이용한 마이크로그리드의 독립운전 제어)

  • Lee, Heung-Seok;Park, June Ho;Koo, Bon-Gil;Kim, Jong-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.727-737
    • /
    • 2014
  • This paper presents the design of Fuzzy PI controller that is used at BESS(Battery Energy Storage System) charging and discharging process for islanded operation in microgrid. Most of the PI controllers have fixed PI gains, but real-time updated gains are applied to PI controller using Fuzzy logic in this paper. The performances of suggested Fuzzy PI controller are simulated by PSCAD/EMTDC. As a result, output characteristics of ESS applied real-time updated gains to PI controller are faster than those of using fixed gains.

A Positioning Method of Distributed Power System by Considering Characteristics of Droop Control in a DC Microgrid

  • Ko, Byoung-Sun;Lee, Gi-Young;Kim, Sang-Il;Kim, Rae-Young;Cho, Jin-Tae;Kim, Ju-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.620-630
    • /
    • 2018
  • In this paper, a positioning method of distributed power system is proposed to minimize the average voltage variation of a DC microgrid through voltage sensitivity analysis. The voltage sensitivity under a droop control depends on the position of the distributed power system. In order to acquire a precise voltage sensitivity under a droop control, we analyzed the power flow by introducing a droop bus with the considerations of the droop characteristics. The results of the positioning method are verified through PSCAD/EMTDC simulation.

Model Predictive Control with Variable Sampling Time for Improving Power Quality of PMSG-based Wind Energy Conversion System in DC Microgrid (DC Microgrid 연계형 PMSG 기반 풍력에너지 변환 시스템의 전력 품질 개선을 위한 가변 샘플링 시간이 적용된 모델예측제어)

  • Lee, Jae-Hyung;Choo, Kyoung-Min;Jeong, Won-Sang;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.180-181
    • /
    • 2019
  • This paper proposes a method for improving the power quality of PMSG-based wind energy conversion system based on model predictive control in DC Microgrid. The MPC has a fast dynamic response. However, a large torque ripple deteriorating power quality is generated by a large and fixed switching period. On the other hand, the proposed method improves the power quality by setting the sampling time having zero torque error. The validity of the proposed method is verified through PSIM simulation.

  • PDF

Optimal Operation of Multi-Microgrid Systems Considering Privacy of Customer Information (고객 정보의 개인 정보 보호를 고려한 멀티 마이크로그리드 시스템의 최적 운영)

  • Hussain, Akhtar;Bui, Van-Hai;Kim, Hak-Man
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.461-463
    • /
    • 2016
  • Information security and preservation of customer's data privacy are key factors for further wide spread adoption of microgrid (MG) technology. However, strong coupling between the operation cost of multi-microgrid (MMG) system and privacy of customer data makes it more challenging. A nested energy management system (EMS) has been proposed in this paper. The surplus/shortage information from the inner level MGs is included in processing the optimal operation of outer level MGs. This type of optimization ensures a layered privacy-preservation to customer at each MG level. The proposed EMS architecture is a better trade-off architecture between the operation cost of the MMG system and customer privacy-preservation at each level of MG.