• 제목/요약/키워드: microgravity

검색결과 107건 처리시간 0.03초

스테비아(Stevia rebaudiana Bertoni)에 있어서 유사미소중력, 진동 및 저온처리에 의한 항산화 활성 변화 (Changes of Antioxidant Enzymes in Stevia Plants under Clinorotation, Shaking, and Low Temperature Stresses)

  • 최용상;정문웅;소웅영;한경식;여읍동
    • 한국자원식물학회지
    • /
    • 제24권4호
    • /
    • pp.343-350
    • /
    • 2011
  • 유사미소중력, 진동 그리고 저온과 같은 물리적 스트래스하에서 4일간 자란 약용식물인 스테비아(Stevia rebaudiana Bertoni)는 대조구에 비해 3.6%, 21% 그리고 8.7%의 생체 중량의 감소를 보였다. 합성 항산화물질인 AA(ascorbic acid)와 BHA(beta-hydroxyacetic acid)는 비교적 약한 22%와 27%의 항산화 활성을 보였다. 유사미소중력하에서 스테비아의 DPPH(2,2-diphenyl-1-picryl hydrazal)의 음이온 소거효과는 대조구보다 지속적으로 더 높게 나타났으나, 진동과 저온처리의 처리효과는 급히 증가했다가 진동의 경우는 6시간 후에 감소되고 저온처리의 경우는 24시간 후에 대조구 수준으로 감소되었다. 유사미소중력하에서 SOD활성은 대조구에 비해 147%, 진동과 저온처리는 각각 121%와 125%로 증가를 보였다. 이상의 결과로부터 유사미소중력스트레스는 다른 스트레스보다 스테비아의 항산화 활성에 더 효과적인 영향을 미치는 것이 분명해졌다.

미세중력장 CdTe 흘로우팅존 생성에서 결정체-용융액 계면주위의 열응력 (Thermal Stresses Near the Crystal-Melt Interface During the Floating-Zone Growth of CdTe Under Microgravity Environment)

  • 이규정
    • 한국전산유체공학회지
    • /
    • 제3권1호
    • /
    • pp.100-107
    • /
    • 1998
  • A numerical analysis of thermal stress over temperature variations near the crystal-melt interface is carried out for a floating-zone growth of Cadmium Telluride (CdTe). Thermocapillary convection determines crystal-melt interfacial shape and signature of temperature in the crystal. Large temperature gradients near the crystal-melt interface yield excessive thermal stresses in a crystal, which affect the dislocations of the crystal. Based on the assumption that the crystal is elastic and isotropic, thermal stresses in a crystal are computed and the effects of operating conditions are investigated. The results show that the extreme thermal stresses are concentrated near the interface of a crystal and the radial and the tangential stresses are the dominant ones. Concentrated heating profile increases the stresses within the crystal, otherwise, the pulling rate decreases the stresses.

  • PDF

Effect of the Gravity Forces on Flow Pattern and Frictional Pressure Drop in Two-Phase, Two-Component Flow

  • Choi, B.-H;Han, W.-H
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.338-346
    • /
    • 2004
  • Experimental data on the effect of the variable gravity magnitude, namely microgravity, normal gravity and hyper-gravity, on flow pattern and frictional pressure drop were obtained during co-current air-water flow in a horizontal tube, The flow patterns were found to depend strongly on the gravity magnitude and certain flow pattern were found to depend on the gas superficial velocity. The effect of the gravity magnitude had an effect on the frictional pressure drop only at low flow rates. The present data are used to evaluate some of existing flow pattern transition and pressure drop models and correlations.

Plant Cells on Earth and in Space

  • Braun, Markus;Sievers, Andreas
    • Animal cells and systems
    • /
    • 제4권3호
    • /
    • pp.201-214
    • /
    • 2000
  • Two quite different types of plant cells are analysed with regard to transduction of the gravity stimulus: (i) Unicellular rhizoids and protonemata of characean green algae; these are tube-like, tip-growing cells which respond to the direction of gravity. (ii) Columella cells located in the center of the root cap of higher plants; these cells (statocytes) perceive gravity. The two cell types contain heavy particles or organelles (sataoliths) which sediment in the field of gravity, thereby inducing the graviresponse. Both cell types were studied under microgravity conditions ($10^{-4}$/ g) in sounding rockets or spacelabs. From video microscopy of living Chara cells and different experiments with both cell types it was concluded that the position of statoliths depends on the balance of two forces, i.e. the gravitational force and the counteracting force mediated by actin microfilaments. The actomyosin system may be the missing link between the gravity-dependent movement of statoliths and the gravity receptor(s); it may also function as an amplifier.

  • PDF

Preliminary Studies on Double-Diffusive Natural Convection During Physical Vapor Transport Crystal Growth of Hg2Br2 for the Spaceflight Experiments

  • Ha, Sung Ho;Kim, Geug Tae
    • Korean Chemical Engineering Research
    • /
    • 제57권2호
    • /
    • pp.289-300
    • /
    • 2019
  • We have conducted a preliminary numerical analysis to understand the effects of double-diffusive convection on the molar flux at the crystal region during the growth of mercurous bromide ($Hg_2Br_2$) crystals in 1 g and microgravity (${\mu}g$) conditions. It was found that the total molar fluxes decay first-order exponentially with the aspect ratio (AR, transport length-to-width), $1{\leq}AR{\leq}10$. With increasing the aspect ratio of the horizontal enclosure from AR = 1 up to Ar = 10, the convection flow field shifts to the advective-diffusion mode and the flow structures become stable. Therefore, altering the aspect ratio of the enclosure allows one to control the effect of the double diffusive natural convection. Moreover, microgravity environments less than $10^{-2}g$ make the effect of double-diffusive natural convection much reduced so that the convection mode could be switched over the advective-diffusion mode.

물리탐사 기술의 지반침하지역 공동탐지 적용성 연구 (Application of Geophysical Methods to Cavity Detection at the Ground Subsidence Area)

  • 김창렬;김정호;박영수;박삼규;이명종;손정술;임형래;정지민
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.376-383
    • /
    • 2005
  • In this study, we conducted geophysical investigations for the organization of integrated geophysical methods to detect underground cavities of ground subsidence area at the field test site, located at Yongweol-ri, Muan-gun. We examined the applicability of geophysical methods such as electrical resistivity, electromagnetic, and microgravity to cavity detection with the aid of borehole survey results. Underground cavities are widely present within the limestone bedrock overlain by the alluvial deposits in the area of the test site where the ground subsidences have occurred in the past. The limestone cavities are mostly filled with groundwater and clays in the test site. Thus, cavities have low electrical resistivity and density compared to the surrounding host bedrock. The results of the study have shown that the zones of low resistivity and density correspond to the zones of the cavities identified in the boreholes at the site, and that the geophysical methods used are very effective to detect underground cavities. Furthermore, we could map the distribution of cavities more precisely with the test results incorporated from the various geophysical methods. It is also important to notice that the microgravity method is a very promising tool since it has rarely used for the cavity detection in korea. Beyond the investigation of underground cavities, the geophysical methods are required to provide useful information for the reinforcement design for the ground subsidence areas. It is, therefore, necessary to develop integrated geophysical technique incorporating different geophysical methods to precisely map underground cavities and image the subsurface of the ground subsidence areas.

  • PDF

고체의 벽면온도에 따른 고온가스 내의 입자거동에 대한 실험 및 수치해석 연구 (Experimental and Computational Studies on Particle Behavior in High Temperature Gas with the Various Temperatures of a Solid Wall)

  • 최재혁;이기영;윤두호;윤석훈;최현규;최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권3호
    • /
    • pp.403-412
    • /
    • 2006
  • The effect of a wall temperature on the soot deposition process from a diffusion flame to a solid wall was investigated in a microgravity environment to attain in-situ observations of the process. The fuel for the flames was an ethylene ($C_2H_4$). The surrounding oxygen concentration was 35% with surrounding air temperatures of $T_a=600K$. In the study, three different wall temperatures. $T_w$=300, 600, 800K, were selected as major test conditions. Laser extinction was adopted to determine the soot volume fraction distribution between the flame and burner wall. The experimental results showed that the maximum soot volume fractions at $T_w$=300, 800 K were $8.8{\times}10^{-6},\;9.2{\times}10^{-6}$, respectively. However, amount of soot deposition on wall surface was decreased because of lower temperature gradient near the wall with increasing wall temperature. A numerical simulation was also performed to understand the motion of soot particles in the flame and the characteristics of the soot deposition to the wall. The results from the numerical simulation successfully predicted the differences in the motion of soot particles by different wall temperature near the burner surface and are in good agreement with observed soot behavior that is, the 'soot line', in microgravity.

무중력에서의 비예혼합 메탄-공기 화염의 전산 II. 화염의 반경과 두께 (Computation of Nonpremixed Methane-Air Flames in Microgravity II. Radius and Thickness of Flame)

  • 박외철
    • 한국안전학회지
    • /
    • 제19권3호
    • /
    • pp.124-129
    • /
    • 2004
  • 초 록 : 확산화염 시뮬레이션에 대해 수치법을 검증하고 변형률과 연료농도가 화염반경과 두께의 변화에 미치는 영향을 조사하기 위해, Fire Dynamics Simulator (FDS)를 사용하여 무중력의 비예혼합 메탄-공기 대향류 화염을 축대칭으로 모사하였다. 연료 중 메탄의 몰분율 $X_m=20,\;50,\;80\%$와 각각의 몰분율에서 세 가지 변형률 $a_g=20,\;60,\;90s^{-1}$$1000^{\circ}C$ 기준 화염반경과 화염두께를 조사하였다. 변형률이 클수록 화염반경은 증가하였으나 화염두께는 거의 선형적으로 감소하였다. 또 화염반경은 메탄농도가 높을수록 감소하였으나, 변형률의 영향만큼 메탄농도에 민감하지 않았다. FDS와 OPPDIF로 각각 구한 무차원 화염두께가 잘 일치하므로, 넓은 범위의 연료농도와 변형률에서 FDS가 대향류 확산화염의 화염구조를 잘 예측할 수 있음을 확인하였다.