• Title/Summary/Keyword: microfluidics

Search Result 165, Processing Time 0.021 seconds

Fabrication of 3D Paper-based Analytical Device Using Double-Sided Imprinting Method for Metal Ion Detection (양면 인쇄법을 이용한 중금속 검출용 3D 종이 기반 분석장치 제작)

  • Jinsol, Choi;Heon-Ho, Jeong
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.323-330
    • /
    • 2022
  • Microfluidic paper-based analytical devices (μPADs) have recently been in the spotlight for their applicability in point-of-care diagnostics and environmental material detection. This study presents a double-sided printing method for fabricating 3D-μPADs, providing simple and cost effective metal ion detection. The design of the 3D-μPAD was made into an acryl stamp by laser cutting and then coating it with a thin layer of PDMS using the spin-coating method. This fabricated stamp was used to form the 3D structure of the hydrophobic barrier through a double-sided contact printing method. The fabrication of the 3D hydrophobic barrier within a single sheet was optimized by controlling the spin-coating rate, reagent ratio and contacting time. The optimal conditions were found by analyzing the area change of the PDMS hydrophobic barrier and hydrophilic channel using ink with chromatography paper. Using the fabricated 3D-μPAD under optimized conditions, Ni2+, Cu2+, Hg2+, and pH were detected at different concentrations and displayed with color intensity in grayscale for quantitative analysis using ImageJ. This study demonstrated that a 3D-μPAD biosensor can be applied to detect metal ions without special analysis equipment. This 3D-μPAD provides a highly portable and rapid on-site monitoring platform for detecting multiple heavy metal ions with extremely high repeatability, which is useful for resource-limited areas and developing countries.

Development of Metal Oxide-based Photocatalyst Coated on Activated Carbon for Removing Volatile Organic Compounds (휘발성 유기화합물 저감을 위한 금속산화물 기반 광촉매-활성탄 복합체 개발)

  • Jae-Rak, Ko;Yewon, Jang;Ho Young, Jun;Hwan-Jin, Bae;Ju-Hyun, Lee;Chang-Ho, Choi
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.285-292
    • /
    • 2022
  • Adsorption tower systems based on activated carbon adsorption towers have mainly been employed to reduce the emission of volatile organic compounds (VOCs), a major cause of air pollution. However, the activated carbon currently used in these systems has a short lifespan and thus requires frequent replacement. An approach to overcome this shortcoming could be to develop metal oxide photocatalysis-activated carbon composites capable of degrading VOCs by simultaneously utilizing photocatalytic activation and powerful adsorption by activated carbon. TiO2 has primarily been used as a metal oxide photocatalyst, but it has low economic efficiency due to its high cost. In this study, ZnO particles were synthesized as a photocatalyst due to their relatively low cost. Silver nanoparticles (Ag NPs) were deposited on the ZnO surface to compensate for the photocatalytic deactivation that arises from the wide band gap of ZnO. A microfluidic process was used to synthesize ZnO particles and Ag NPs in separate reactors and the solutions were continuously supplied with a pack bed reactor loaded with activated carbon powder. This microfluidic-assisted pack bed reactor efficiently prepared a Ag-ZnO-activated carbon composite for VOC removal. Analysis confirmed that Ag-ZnO photocatalytic particles were successfully deposited on the surface of the activated carbon. Conducting a toluene gasbag test and adsorption breakpoint test demonstrated that the composite had a more efficient removal performance than pure activated carbon. The process proposed in this study efficiently produces photocatalysis-activated carbon composites and may offer the potential for scalable production of VOC removal composites.

Preparation of PVA/Graphene Oxide/Fe3O4 Magnetic Microgels as an Effective Adsorbent for Dye Removal (폴리바이닐알코올/그래핀 옥사이드/산화철 자성 마이크로겔을 이용한 염료 제거)

  • Go, Seongmoon;Kim, Keunseong;Wi, Eunsol;Park, Rae-Su;Jung, Hong-Ryun;Yun, Changhun;Chang, Mincheol
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.98-105
    • /
    • 2022
  • In this study, polyvinyl alcohol (PVA)/graphene oxide (GO)/iron oxide (Fe3O4) magnetic microgels were prepared using a microfluidic approach and the dye adsorption capacity of the microgels was confirmed. The adsorption capacity (qe) of the gels was evaluated by varying the dye concentration, pH, and contact time with the microgels. The dyes used in this work were methylene blue (MB), crystal violet (CV), and malachite green (MG), and microgels showed the highest adsorption capacity (191.1 mg/g) in methylene blue. The microgels exhibited the highest adsorption capacity in the dye aqueous solution at pH 10 due to the presence of atomic nitrogen ions (N+) on the dye molecules. The adsorption isotherm studies revealed that the Langmuir isotherm is the best fit isotherm model for the dye adsorption on the microgels, indicative of monolayer adsorption. The kinetic analysis exhibited that the pseudo-second order model fits better than the pseudo-first order model, confirming that the adsorption process is chemisorption. In addition, the magnetic microgels showed good reusability and recovery efficiency. It was confirmed that the adsorption capacity of the gels maintains more than 70% of the initial capacity after 5 times of cycle experiments.

A Study on Hydrophobic Surface Treatment for Microfluidic System Fabrication Based on SLA 3D Printing Method (SLA 3D 프린팅 방식 기반의 미세 유체 시스템 제작을 위한 소수성 표면 처리 연구)

  • Jae Uk Heo;Seo Jun Bae;Do Jin Im
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.105-111
    • /
    • 2024
  • The SLA (Stereolithography Apparatus) method is a type of 3D printing technique predicated on the transformation of liquid photocurable resin into a solid form through UV laser exposure, and its application is increasing in various fields. In this study, we conducted research to enhance the hydrophobicity and transparency of SLA 3D printing surfaces for microfluidic system production. The enhancement of surface hydrophobicity in SLA outputs was attainable through the application of hydrophobic coating methods, but the coating durability under different conditions varied depending on the type of hydrophobic coating. Additionally, to simultaneously achieve the required transparency and hydrophobic properties for the fabrication of microfluidic systems, we applied hydrophobic coatings to the proposed transparency enhancement method from prior research and compared the changes in contact angles. Teflon coating was proposed as a suitable hydrophobic coating method for the fabrication of microfluidic systems, given its excellent transparency and high coating durability in various environmental conditions, in comparison to titanium dioxide coating. Finally, we produced an Electrophoresis of Charged Droplet (ECD) chip, one of the digital microfluidics systems, using SLA 3D printing with the proposed Teflon coating method (Fluoropel 800). Droplet manipulation was successfully demonstrated with the fabricated chip, confirming the potential application of SLA 3D printing technology in the production of microfluidic systems.

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.325-340
    • /
    • 2024
  • There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.