DOI QR코드

DOI QR Code

A Study on Hydrophobic Surface Treatment for Microfluidic System Fabrication Based on SLA 3D Printing Method

SLA 3D 프린팅 방식 기반의 미세 유체 시스템 제작을 위한 소수성 표면 처리 연구

  • Jae Uk Heo (Department of Chemical Engineering, Pukyong National University) ;
  • Seo Jun Bae (Department of Chemical Engineering, Pukyong National University) ;
  • Do Jin Im (Department of Chemical Engineering, Pukyong National University)
  • 허재욱 (국립부경대학교 화학공학과) ;
  • 배서준 (국립부경대학교 화학공학과) ;
  • 임도진 (국립부경대학교 화학공학과)
  • Received : 2023.11.03
  • Accepted : 2023.11.21
  • Published : 2024.02.01

Abstract

The SLA (Stereolithography Apparatus) method is a type of 3D printing technique predicated on the transformation of liquid photocurable resin into a solid form through UV laser exposure, and its application is increasing in various fields. In this study, we conducted research to enhance the hydrophobicity and transparency of SLA 3D printing surfaces for microfluidic system production. The enhancement of surface hydrophobicity in SLA outputs was attainable through the application of hydrophobic coating methods, but the coating durability under different conditions varied depending on the type of hydrophobic coating. Additionally, to simultaneously achieve the required transparency and hydrophobic properties for the fabrication of microfluidic systems, we applied hydrophobic coatings to the proposed transparency enhancement method from prior research and compared the changes in contact angles. Teflon coating was proposed as a suitable hydrophobic coating method for the fabrication of microfluidic systems, given its excellent transparency and high coating durability in various environmental conditions, in comparison to titanium dioxide coating. Finally, we produced an Electrophoresis of Charged Droplet (ECD) chip, one of the digital microfluidics systems, using SLA 3D printing with the proposed Teflon coating method (Fluoropel 800). Droplet manipulation was successfully demonstrated with the fabricated chip, confirming the potential application of SLA 3D printing technology in the production of microfluidic systems.

SLA (Stereo Lithography Apparatus) 방식은 액체 상태의 광경화성 레진(Resin)이 자외선 레이저에 닿으면 고체가 되는 원리를 활용한 3D 프린팅 방식으로 다양한 분야에서의 활용도가 증가하고 있다. 본 연구에서는 이 SLA 3D 프린팅 출력물의 표면 특성 중 소수성과 투명도를 개선하여 미세 유체 시스템의 제작에 활용하기 위한 기초 연구를 수행하였다. SLA 출력물은 소수성 코팅 방법을 이용해 표면 소수성의 특성을 개선할 수 있었으나, 소수성 코팅 방법의 종류에 따라 다양한 환경에서의 코팅 유지력은 차이를 보였다. 또한, 미세 유체 시스템의 제작에 요구되는 충분한 투명도와 소수성의 특성을 함께 확보하기 위해 선행된 연구에서 제안한 투명도 확보 방법에 소수성 코팅을 적용하여 접촉각의 변화를 비교하였다. Teflon 코팅법이 이산화 티타늄 코팅법과 비교하여 우수한 투명도의 확보가 가능하며, 다양한 환경에 노출되었을 때 높은 코팅의 유지력을 가져 미세 유체 시스템의 제작에 활용되기에 적합한 소수성 코팅법으로 제안되었다. 마지막으로 본 연구를 통해 제안된 미세 유체 시스템의 제작에 적합한 소수성 코팅 방법인 Teflon 코팅법 중 Fluoropel 800을 이용하여 디지털 미세 유체 시스템 중 하나인 액적 접촉 충전 현상(Electrophoresis of Charged Droplet, ECD) 칩을 SLA 3D 프린팅으로 제작, 액적의 조작을 성공적으로 시연함으로써 SLA 3D 프린팅 기술의 미세 유체 시스템의 제작에 활용 가능성을 확인하였다.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의학술연구비(2023년)에 의하여 연구되었습니다.

References

  1. Karakurt, I., and Lin, L., "3D Printing Technologies: Techniques, Materials, and Post-processing," Curr. Opin. Chem. Eng. 28, 134-143(2020). https://doi.org/10.1016/j.coche.2020.04.001
  2. Lee, J. Y., An, J. and Chua, C. K., "Fundamentals and Applications of 3D Printing for Novel Materials," Appl. Mater. Today., 7, 120-133(2017). https://doi.org/10.1016/j.apmt.2017.02.004
  3. Shahrubudin, N., Lee, T. C. and Ramlan, R. J. P. M., "An Overview on 3D Printing Technology : Technological, Materails, and Applications," Procedia. Manuf., 35, 1286-1296(2019). https://doi.org/10.1016/j.promfg.2019.06.089
  4. Dhinakaran, V., Kumar, K. M., Ram, P. B., Ravichandran, M. and Vinayagamoorthy, M., "A Review on Recent Advancements In Fused Deposition Modeling," Mater. Today: Proc., 27, 752-756(2020). https://doi.org/10.1016/j.matpr.2019.12.036
  5. Gaal, G., Mendes, M., de Almeida, T. P., Piazzetta, M. H., Gobbi, A. L., Riul Jr, A. and Rodrigues, V., "Simplified Fabrication of Integrated Microfluidic Devices Using Fused Deposition Modeling 3D Printing," Sens. Actuators B Chem., 242, 35-40(2017). https://doi.org/10.1016/j.snb.2016.10.110
  6. Shanmugam, V., Pavan, M. V., Babu, K. and Karnan, B., "Fused Deposition Modeling Based Polymeric Materials and Their Performance: A Review," Polym. Compos., 42(11), 5656-5677(2021). https://doi.org/10.1002/pc.26275
  7. Huang, J., Qin, Q. and Wang, J., "A Review of Stereolithography: Processes and Systems," Processes, 8(9), 1138(2020).
  8. Park, H. K., Shin, M., Kim, B., Park, J. W. and Lee, H., "A Visible Light-curable Yet Visible Wavelength-transparent Resin for Stereolithography 3D Printing," NPG Asia Mater., 10(4), 82-89 (2018). https://doi.org/10.1038/s41427-018-0021-x
  9. Bagheri, A. and Jin, J., "Photopolymerization in 3D Printing," Acs Appl. Polym. Mater., 1(4), 593-611(2019). https://doi.org/10.1021/acsapm.8b00165
  10. Bhattacharjee, N., Urrios, A., Kang, S. and Folch, A., "The Upcoming 3D-printing Revolution in Microfluidics," Lab Chip, 16(10), 1720-1742(2016). https://doi.org/10.1039/C6LC00163G
  11. Nadagouda, M. N., Rastogi, V. and Ginn, M., "A Review on 3D Printing Techniques for Medical Applications," Curr. Opin. Chem. Eng., 28, 152-157(2020). https://doi.org/10.1016/j.coche.2020.05.007
  12. Au, A. K., Huynh, W., Horowitz, L. F. and Folch, A., "3D-printed Microfluidics," Angew. Chem. Int. Ed., 55(12), 3862-3881(2016). https://doi.org/10.1002/anie.201504382
  13. Tack, P., Victor, J., Gemmel, P. and Annemans, L., "3D-printing Techniques in a Medical Setting: a Systematic Literature Review," Biomed. Eng. Online, 15, 1-21(2016). https://doi.org/10.1186/s12938-015-0119-0
  14. Comina, G., Suska, A. and Filippini, D., "Low Cost Lab-on-a-chip Prototyping with a Consumer Grade 3D Printer," Lab Chip, 14(16), 2978-2982(2014). https://doi.org/10.1039/C4LC00394B
  15. Gunther, D., Heymel, B., Franz Gunther, J. and Ederer, I., "Continuous 3D-printing for Additive Manufacturing," Rapid Prototyp. J., 20(4), 320-327(2014). https://doi.org/10.1108/RPJ-08-2012-0068
  16. Waheed, S., Cabot, J. M., Macdonald, N. P., Lewis, T., Guijt, R. M., Paull, B. and Breadmore, M. C., "3D Printed Microfluidic Devices: Enablers and Barriers," Lab Chip, 16(11), 1993-2013 (2016). https://doi.org/10.1039/C6LC00284F
  17. Jafari, R., Cloutier, C., Allahdini, A. and Momen, G., "Recenct Progress and Challenges with 3D Printing of Patterned Hydrophobic and Superhydrophobic Surfaces," Int. J. Adv. Manuf. Technol. 103, 1225-1238(2019). https://doi.org/10.1007/s00170-019-03630-4
  18. Bae, S. J. and Im, D. J., "Comparison of Surface Characteristics According to 3D Printing Methods and Materials for the Fabrication of Microfluidic Systems," Korean Chem. Eng. Res. 57(5), 706-713(2019).
  19. Bae, S. J. and Im, D. J., "A Study on the Changes in Surface Properties According to Post-treatment of SLA 3D Printing Materials," Korean Chem. Eng. Res., 60(1), 132-138(2022).
  20. Barraze, B., Olate-Moya, F., Montecinos, G., Ortega, J. H., Rosenkranz, A., Tamburrino, A. and Palza, H., "Superhydrophobic SLA 3D Printed Materials Modified with Nanoparticles Biomimicking the Hierarchical Structure of a Rice Leaf," Sci. Technol. Adv Mater., 23(1), 300-321(2022). https://doi.org/10.1080/14686996.2022.2063035
  21. Im, D. J., Noh, J., Moon, D. and Kang, I. S., "Electrophoresis of a Charged Drople in a Dielectric Liquid for Droplet Actuation," Anal. Chem. 83(13), 5168-5174(2011). https://doi.org/10.1021/ac200248x
  22. Im, D. J., Yoo, B. S., Ahn, M. M., Moon, D. and Kang, I. S., "Digital Electrophoresis of Chared Droplets," Anal. Chem. 85(8), 4038-4044(2013). https://doi.org/10.1021/ac303778j