• Title/Summary/Keyword: microchannels

검색결과 125건 처리시간 0.022초

미소채널내의 Langmuir 미끄럼 경계조건을 통한 미끄럼 속도 및 급격한 온도변화에 관한 수치해석 (Numerical Analysis of the Slip Velocity and Temperature-Jump in Microchannel Using Langmuir Slip Boundary Condition)

  • 김상우;김현구;이도형
    • 대한기계학회논문집B
    • /
    • 제33권3호
    • /
    • pp.164-169
    • /
    • 2009
  • The slip velocity and the temperature jumps for low-speed flow in microchannels are investigated using Langmuir slip boundary condition. This slip boundary condition is suggested to simulate micro flow. The current study analyzes Langmuir slip boundary condition theoretically and it analyzed numerically micro-Couette flow, micro-Poiseuille flow and grooved microchannel flow. First, to prove validity for Langmuir slip condition, an analytical solution for micro-Couette flow is derived from Navier-Stokes equations with Langmuir slip conditions and is compared with DSMC and an analytical solution with Maxwell slip boundary condition. Second, the numerical analysis is performed for micro-Poiseuille flow and grooved microchannel flow. The slip velocity and temperature distribution are compared with results of DSMC or Maxwell slip condition and those are shown in good agreement.

Visualization of the two-layered electroosmotic flow and its EHD instability in T-channels by micro PIV

  • Kang Kwan Hyoung;Shin Sang Min;Lee Sang Joon;Kang In Seok
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.75-78
    • /
    • 2003
  • An interfacial instability has recently been observed for the DC- and AC-powered electroosmotic flows of the two miscible electrolyte layers having different concentrations in microchannels. It is rather contrary to our common belief that the flow inside a microchannel is generally stable due to the dominant role of the viscous damping. In this work, we visualized the electroosmotic flow inside a T-channel to validate the numerical predictions. It is clearly shown that the strong vortices (which characterize the interface shapes) are generated at the interface of the two fluids, as was predicted in the numerical analysis.

  • PDF

T형 마이크로채널 내부 압력구동 유동의 PIV 계측 (PIV Measurements of the Pressure Driven Flow Inside a T-Shaped Microchannel)

  • 최제호;이인섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.423-426
    • /
    • 2002
  • A custom micro-PIV optics assembly has been used to measure the flow field inside a T-shaped microchannel. The micro-PIV system consists of microscope objectives of various magnifications, a dichroic cube, and an 8-bit CCD camera. Fluorescent particles of diameters 620nm have been used with a Nd:YAG laser and color filters. A programmable syringe pump with Teflon tubings were used to inject particle-seeded distilled water into the channel at flow rates of $420,\;40,\;60{\mu}L/hr$. The microchannels are fabricated with PDMS with a silicon mold, then $O_2-ion$ bonded onto a slide glass. Results show differences in flow characteristics and resolution according to fluid injection rates, and magnifications, respectively. The results show PIV results with vector-to-vector distances of $2{\mu}m$ with 32 pixel-square interrogation windows at $50{\%}$ overlap.

  • PDF

마이크로 믹서에서 와도 지수에 의한 비용해성 물질의 혼합 예측 (Prediction of Degree of Mixing for Insoluble Solution with Vortex Index in a Passive Micromixer)

  • 조일대;김범중;맹주성
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.232-238
    • /
    • 2005
  • The 'Mixing Index($D_I$)' is used as a conventional guidance measuring the degree of mixing for multiphase flows. For the case when insoluble solutions flow in a passive micromixer, a new method to calculate $D_I$ is proposed. The 'Vortex Index(${\Omega}_I$)' is suggested and formulated. We infer that ${\Omega}_I$ relates to the degree of chaotic advection. Various arbitrary shaped microchannels were tested to calculate the $D_I\;and\;{\Omega}_I$, and then a simple algebraic equation, $D_I=Aexp(B{\Omega}_I)$, is obtained. This equation may be used instead of the conventional partial differential equation, concentration equation, to estimate the degree of mixing.

마이크로 채널에서의 열혼합 특성 (Thermal Mixing in a Microchannel)

  • 박경배;안준;김병조;이준식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.585-588
    • /
    • 2008
  • Thermal mixing phenomena in a Y-type microchannel were investigated using a micro-PIV. Two inlet reservoirs of the microchannel were controlled individually so that the characteristics of thermal mixing in the channel with temperature difference were compared with those without the difference. The velocity field in the mixing process was measured using the micro-PIV system that includes an ICCD (Intensified CCD) camera. The mixing area and uniformity were also analyzed. It is observed that the flow fluctuation in spanwise direction is induced by temperature difference, which enhances mixing process in microchannels.

  • PDF

혼합 개선을 위한 Y-채널 마이크로 믹서의 최적설계 (Optimum Design of a Y-channel Microcmixer for Enhanced Mixing)

  • 신용수;최형일;이동호;이도형
    • 대한기계학회논문집A
    • /
    • 제30권3호
    • /
    • pp.302-309
    • /
    • 2006
  • Effective mixing plays a crucial role in microfluidics for biochemical applications. Owing to the small device scale and its entailing the low Reynolds number, the mixing in microchannels proceeds very slowly. In this work, we optimize the configuration of obstacles in the Y-channel mixer in order to attain maximum mixing efficiency. Before the optimum design, mixing characteristics are investigated using unstructured grid CFD method. Then, the analysis method is employed to construct the approximate analysis model to be used in the optimization procedure. The main optimization tool in the present work is sequential quadratic programming method. Using this approximate optimization procedure, we may obtain the optimum layout of obstacles in the Y-channel mixer in an efficient manner, which gives the maximum mixing efficiency.

불균일 표면전하를 지닌 미소채널 내에서의 혼합에 관한 수치 해석적 연구 (Numerical Analysis on Mixing in a Microchannel with Inhomogeneous Surface Charge)

  • 송경석;이도형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1004-1009
    • /
    • 2003
  • Electroosmotic flow induced by an applied electrostatic potential field in microchannel is analyzed in this study. The electroosmotic flow is an alternative to pressure driven flow in microchannels, but the usage has been limited to the simple cases. In this study, We analyze electroosmotic flow driven by inhomogeneous surface charge on the channel wall. The surface charge varies along a direction perpendicular to the electric field in order to generate the electroosmotic flow. A numerical results substantiate the highly efficient mixing performance. It is highly the beneficial to fabrication process since only straight microchannel rather than complex geometry is enough to yield efficient mixing.

  • PDF

마이크로 채널 내에서의 유전영동을 이용한 입자의 연속적인 분리에 대한 연구 (Study on Continuous-Flow Particle Separation in a Microchannel using Dielectrophoresis)

  • 류정은;강관형
    • 한국가시화정보학회지
    • /
    • 제7권2호
    • /
    • pp.56-63
    • /
    • 2010
  • In this work, a dielectrophoresis-based particle-separation device is developed which is to be used to continuously separate particles in microchannels. We fabricated the particle-separation device with combining the benefits of electrode-based DEP and insulator-based DEP. The DEP forces are generated by an array of electrodes located in both sidewalls of a main channel. According to the magnitude and frequency of electrical signals, particles with different dielectric properties experience different DEP forces, and therefore, continuously move along different streamlines in the main flow channel without need of pre-focusing process. Based on this mechanism, we examined the performance of the device by controlling the trajectory of polystyrene particles. This device is applicable to the investigation of dielectric properties of biological cells as well as the continuous separation of biological cells.

자동차탑재용 연료개질시스템을 위한 마이크로채널개발 (Microchannel Development for Fuel Processor of Automotive Applications)

  • 배중면
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2003년도 연료전지심포지움 2003논문집
    • /
    • pp.89-95
    • /
    • 2003
  • Fuel processing is an enabling technology for faster commercialization under lack of hydrogen infrastructures. It has been reported that the development of novel catalysts that are active and selective for hydrocarbon reforming reactions. It has been realized, however, that with pellet or conventional honeycomb catalysts, the reforming process is mass transport limited. This paper reports the development of catalyst structures with microchannels that are able to reduce the diffusion resistance and thereby achieve the same production rate within a smaller reactor bed. These microchannel reforming catalysts were prepared and tested with natural gas and gasoline-type fuels in a microreactor (1-cm dia.) at space velocities of up to 250,000 per hour. These catalysts have also been used in engineering-scale reactors (10 kWe, 7-cm dia.) with similar product qualities. Compared to pellet catalysts. the microchannel catalysts enable a nearly 5-fold reduction in catalyst weight and volume.

  • PDF

마이크로 유동 네트워크 설계를 위한 1차원 GUI 프로그램 개발에 관한 연구 (A STUDY ON THE DEVELOPMENT OF ONE-DIMENSIONAL GUI PROGRAM FOR MICROFLUIDIC-NETWORK DESIGN)

  • 박인형;강상모;서용권
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.86-92
    • /
    • 2009
  • Nowadays, the development of microfluidic chip [i.e. biochip, micro-total analysis system ($\mu$-TAS) and LOC (lab-on-a-chip)] becomes more active, and the microchannels to deliver fluid by pressure or electroosmotic forces tend to be more complex like electronic circuits or networks. For a simple network of channels, we may calculate the pressure and the flow rate easily by using suitable formula. However, for complex network it is not handy to obtain such information with that simple way. For this reason, Graphic User Interface (GUI) program which can rapidly give required information should be necessary for microchip designers. In this paper, we present a GUI program developed in our laboratory and the simple theoretical formula used in the program. We applied our program to simple case and could get results compared well with other numerical results. Further, we applied our program to several complex cases and obtained reasonable results.