• 제목/요약/키워드: microchannel electrophoresis

검색결과 8건 처리시간 0.026초

Recent Advances in DNA Sequencing by End-labeled Free-Solution Electrophoresis (ELFSE)

  • Won, Jong-In
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권3호
    • /
    • pp.179-186
    • /
    • 2006
  • End-Labeled Free-Solution Electrophoresis (ELFSE) is a new technique that is a promising bioconjugate method for DNA sequencing (or separation) and genotyping by both capillary and microfluidic device electrophoresis. Because ELFSE enables high-resolution electrophoretic separation in aqueous buffer alone (i.e., without a polymer matrix), it eliminates the need to load viscous polymer networks into electrophoresis microchannels. To achieve microchannel DNA separations with high performance, ELFSE requires monodisperse perturbing entities (i.e., drag-tags), which create a large amount of frictional drag when pulled behind DNA during free-solution electrophoresis, and which have other properties suitable for microchannel electrophoresis. In this article, the theoretical concepts of ELFSE and the required characteristics of the drag-tag molecules for the ultimate performance of ELFSE are reviewed. Additionally, the merits and limitations of current drag-tags are also discussed in the context of recent experimental data of ELFSE separation (or sequencing).

DNA의 제한효소 반응 및 전기영동 검출용 PDMS/유리 마이크로바이오칩 (PDMS/Glass Based DNA Microbiochip for Restriction Enzyme Reaction and Electrophoresis Detection)

  • 최준영;안유민;황승용
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.26-31
    • /
    • 2006
  • This paper reports low-cost PDMS/glass based DNA microbiochip for the restriction enzyme reaction and its products detection using the capillary electrophoresis. The microbiochip ($25mm{\times}75mm$) has the heater integrated reactor ($5{\mu}{\ell}$) for DNA restriction enzyme reaction at $37^{\circ}C$ and the microchannel ($80\;{\mu}m{\times}100\;{\mu}m{\times}58mm$) for the capillary electrophoresis detection. It is experimentally confirmed that the digestion of the plasmid ($pGEM^{(R)}-4Z$) by the enzyme (Hind III and Sca I) is performed for less than 10 min and its electrophoresis detection is able to sequentially on the fabricated microbiochip.

Evaluation of Electrokinetic Flow Mobility Using Isotacho-Electrophoresis Techniques

  • An, J.H.;Joo, Y.H.;Lee, C.Y.;Lee, Y.J.;Park, C.W.
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.444-448
    • /
    • 2011
  • In the present study, we separated the marker particles from the suspending particle mixture solution using isotacho-electrophoresis technique, a novel quantitative ionic particle separation method, in the microchannel. A multiple stacking zone of the suspending particle was visualized with variations in electric field strength, pH value and concentration of the ionic solution. In particular, the electrophoretic mobility of ionic particle (fluorescein) was estimated based on the electrophoretic velocity value measured by the particle image velocimetry. As a result, isotacho-electrophoresis zones were clearly visualized as going downstream in the electric field. The particle migration velocity increased proportional to the applied voltage increase; it was also affected by the pH value variations in the ionic solution.

전기 영동에서의 입자간의 전기력에 의한 상호 작용 (Dielectric Interaction of Particle in Electrophoresis)

  • 이호림;강관형
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.171-174
    • /
    • 2006
  • When two particles close to each other are in electrophoretic motion, each particle is under the influence of the non-uniform electric field generated by the other particle. Two particles may attract or repel each other due to the dielectric force depending on their positions in the non-uniform electric field. It is shown analytically that two adjusting rigid particles can form an aggregate due to the dielectric interaction. To verify the validity of the theoretical prediction, an experiment is carried out by using a microchannel. In the experiment, AC electric field is used to eliminate cumbersome electroosmotic flow. The experimental result shows that the particles form a chain-like structure, which is typically observed in electro-rheological fluid, due to the dielectric interaction.

  • PDF

마이크로 칩 전기영동에 응용하기 위한 다결정 실리콘 층이 형성된 마이크로 채널의 MEMS 가공 제작 (MEMS Fabrication of Microchannel with Poly-Si Layer for Application to Microchip Electrophoresis)

  • 김태하;김다영;전명석;이상순
    • Korean Chemical Engineering Research
    • /
    • 제44권5호
    • /
    • pp.513-519
    • /
    • 2006
  • 본 연구에서는 유리(glass)와 석영(quartz)을 재질로 사용하여 MEMS(micro-electro mechanical systems) 공정을 통해 전기영동(electrophoresis)을 위한 microchip을 제작하였다. UV 광이 실리콘(silicon)을 투과하지 못하는 점에 착안하여, 다결정 실리콘(polycrystalline Si, poly-Si) 층을 채널 이외의 부분에 증착시킨 광 차단판(optical slit)에 의해 채널에만 집중된 UV 광의 신호/잡음비(signal-to-noise ratio: S/N ratio)를 크게 향상시켰다. Glass chip에서는 증착된 poly-Si 층이 식각 마스크(etch mask)의 역할을 하는 동시에 접합표면을 적절히 형성하여 양극 접합(anodic bonding)을 가능케 하 였다. Quartz 웨이퍼에 비해 불순물을 많이 포함하는 glass 웨이퍼에서는 표면이 거친 채널 내부를 형성하게 되어 시료용액의 미세한 흐름에 영향을 미치게 된다. 이에 따라, HF와 $NH_4F$ 용액에 의한 혼합 식각액(etchant)을 도입하여 표면 거칠기를 감소시켰다. 두 종류의 재질로 제작된 채널의 형태와 크기를 관찰하였고, microchip electrophoresis에 적용한 결과, quartz과 glass chip의 전기삼투 흐름속도(electroosmotic flow velocity)가 0.5와 0.36 mm/s로 측정되었다. Poly-Si 층에 의한 광 차단판의 존재에 의해, peak의 S/N ratio는 quartz chip이 약 2배 수준, glass chip이 약 3배 수준으로 향상되었고, UV 최대흡광 감도는 각각 약 1.6배 및 1.7배 정도 증가하였다.

마이크로 전기영동 소자의 제작과 유로 면 특성에 따른 전기삼투 및 전기영동 효과 (Fabrication of electro phoresis microchips and effects of channel surface properties)

  • 김민수;조승일;이국녕;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.286-289
    • /
    • 2003
  • We investigated the influence of the properties of substrate material on the separation efficiency in microchip electrophoresis. We fabricated the various microchips and studied separation efficiency in microchannels composed of a single material such as quartz, glass, polydimethylsiloxane (PDMS), and polymethylmetha crylate (PMMA), as well as hybrid micro channels composed of different materials. New fabrication process for glass chip was suggested and some treatment is added to improve fabrication process in other chip. Separation efficiency was compared by measuring migration times and bandwidths of EOF and analytes in each microchip. The efficiency is the function of migration time, which is affected by the electroosmotic flow (EOF), and bandwidth of an analyte. EOF is highly dependent upon the characteristics of a microchannel wall surface. Migration time was more reproducible in silica chips than that of PDMS chip and more band broadening was observed in the microchip composed of hybrid material due to non-uniformity of surface charge density at the walls of the channel.

  • PDF

An integrated DNA barcode assay microdevice for rapid, highly sensitive and multiplex pathogen detection at the single-cell level

  • Jung, Jae Hwan;Cho, Min Kyung;Chung, So Yi;Seo, Tae Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.276-276
    • /
    • 2013
  • Here we report an integrated microdevice consisting of an efficient passive mixer, a magnetic separation chamber, and a capillary electrophoretic microchannel in which DNA barcode assay, target pathogen separation, and barcode DNA capillary electrophoretic analysis were performed sequentially within 30 min for multiplex pathogen detection at the single-cell level. The intestine-shaped serpentine 3D micromixer provides a high mixing rate to generate magnetic particle-pathogenic bacteria-DNA barcode labelled AuNP complexes quantitatively. After magnetic separation and purification of those complexes, the barcode DNA strands were released and analyzed by the microfluidic capillary electrophoresis within 5 min. The size of the barcode DNA strand was controlled depending on the target bacteria (Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella typhimurium), and the different elution time of the barcode DNA peak in the electropherogram allows us to recognize the target pathogen with ease in the monoplex as well as in the multiplex analysis. In addition, the quantity of the DNA barcode strand (~104) per AuNP is enough to be observed in the laser-induced confocal fluorescence detector, thereby making single-cell analysis possible. This novel integrated microdevice enables us to perform rapid, sensitive, and multiplex pathogen detection with sample-in-answer-out capability to be applied for biosafety testing, environmental screening, and clinical trials.

  • PDF